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 Abstract An artificial lateral line (ALL) consists of a set of flow 

sensors arranged around a fish-like body, which can dynamically 

track an underwater moving object and estimate its parameters 

including size, shape, velocity and position by employing the 

extended Kalman filter (EKF); Nevertheless, the uncertainty in the 

sensors and in the employed flow model makes accurate tracking 

challenging. The goal of this study is to maximize the accuracy of 

tracking for an arbitrary object by proper selection of the design 

parameters including shape, size and the number and location of the 

sensors. It develops a robust parametric fitness function for 

quantifying the tracking accuracy. A comprehensive parameter 

study is rendered to find the set of parameters that minimizes the 

uncertainty in evaluation of a design. The magnitude of uncertainty 

in the model is estimated by performing a computational fluid 

dynamics simulation. Covariance matrix adaptation evolution 

strategy (CMA-ES) is then employed to determine optimum 

parameters of EKF and to optimize the ALL. Trade-off between the 

tracking accuracy and the number of sensors is also analyzed. 

Dependency of the optimum setting of the EKF and the design 

parameters on the amount of uncertainty in the problem is 

investigated as well.   

Keywords: Extended Kalman filter; Object tracking; Sensor 

placement  

1. INTRODUCTION  
The lateral line system of fish is an important organ sensitive to 

fluid motion around the fish's body [1], and involved in various 

biological behaviors, such as schooling [2] station holding [3], and 

prey/predator detection [4]. A lateral line system comprises arrays 

of mechanoreceptive units called neuromasts, which function as 

flow sensors [5]. The superficial neuromasts, which stick out of the 

fish skin and respond to flow velocities, is one of the two types of 

neuromasts [6]. The interaction between the flow and the 

neuromasts generate neuronal pulses which are transmitted to the 

central nervous system for further information processing [7]. 

The biological lateral line has inspired a number of efforts in 

developing an engineering equivalent of analogous sensing 

modality for underwater applications. Such an artificial lateral line 

(ALL) system will function as a novel and noiseless sensing 

modality, and assist underwater robots and vehicles for the 

navigation and control when traditional underwater sensing 

strategies such as vision or sonar are inhibited [8, 9]. 

Some theoretical work has also been reported on flow modeling and 

information processing to extract information from ALLs [5, 10, 

11]. While most of previous studies focused on the estimation of a 

vibrating source, called the dipole source [12, 13, 14], several other 

studies aimed at tracking moving objects or vortex [15, 16, 17, 18], 

where arrays of commercial pressure sensors are adopted. IPMC-

based ALLs are also reported on tracking and estimating a moving 

cylindrical object by measuring the flow velocities, analogous to 

the superficial neuromasts, and applying the Kalman filter strategy 

[18]. 

Although studies have been conducted on the tracking and 

estimation of moving objects using the ALL system, very few has 

addressed the identification of an optimal ALL, the one that 

provides maximum estimation accuracy for an arbitrary moving 

object. In a previous study [11], the placement of flow sensors was 

optimized based on observability for the control purpose. The 

proposed estimation and optimization were performed in a uniform 

flow field, different from the tracking of a moving object. 

Moreover, the adopted flow model was commonly assumed to be 

accurate while like most other theoretically driven models, it relies 

on assumptions that may not meet practical situations. 

Unlike most previous studies on ALLs, this article develops an 

evolutionary bi-objective design tool for an ALL, including the 

shape, size, and the number of locations of flow velocity sensors, 

mailto:ahrarial@msu.edu
mailto:leihongbuaa@gmail.com
mailto:engmas83@yahoo.com
mailto:kdeb@egr.msu.edu
mailto:xbtan@egr.msu.edu


such that the accuracy of tracking is maximized for an arbitrary 

moving object. In particular, an ALL is used to dynamically track 

a moving cylindrical object and estimate its parameters including 

size, shape, velocity, and position by applying the extended Kalman 

filter (EKF) strategy. This dynamic tracking problem is 

fundamentally different from identification of a vibrating dipole. 

The uncertainty in the sensors and in the employed flow model is 

simulated in this study, making it challenging to accurately track 

the moving object. Therefore, a robust parametric fitness function 

is first developed to quantify the tracking accuracy. A 

comprehensive parameter study is then rendered to find the set of 

parameters that minimizes the uncertainty in evaluation of a design. 

The magnitude of uncertainty in the model is estimated by 

comparing results of the computational fluid dynamics (CFD) 

simulation and available theoretical results. The study is interesting 

from (1) handling of noise in evaluation function, (2) inverse 

problem solving, and (3) a bi-objective optimal design of an 

artificial lateral line system for tracking underwater moving 

objects. 

The rest of this paper is organized as follows. In Section 2, the 

tracking problem is formulated and extended Kalman Filter is 

employed to solve the tracking problem. In Section 3, the 

optimization problem is discussed and a parametric fitness function 

is proposed.  Parameter study is performed in Section 4 and 

optimization results are provided in Section 5. Finally, conclusions 

are drawn in Section 7. 

2. PROBLEM FORMULATION  
The goal of the ALL system is to identify parameters of a moving 

object with ellipsoidal profile and to track its position using an array 

of flow sensors, as illustrated in Figure 1. The ALL consists of a 

number of sensors, located in xy plane, with the sensor locations 

denoted as (xi,yi), 1 ≤ i ≤ Nsensor. For ease of buildability, the sensors 

are mounted perpendicular to the ALL body, therefore, the sensing 

direction would be parallel to the body at the place of the sensors. 

Each sensor provides a noisy measurement of the local flow 

velocity along its sensing direction, denoted by Mi(t).  [xs(t) ,ys(t)] 

specifies the position of the center of the moving cylindrical shape 

at time t. The object is assumed to move at a constant speed of vx 

along the x coordinate. This motion causes a disturbance and a flow 

field around the object which can be computed using a potential 

flow model: 

𝑀𝑖(t) = 𝑓(𝜽(𝑡), [𝑥𝑖 , 𝑦𝑖])                                                                 (1)  

where Mi(t) is the local flow velocity at the place of sensor i and 

θ(t) represents parameters of the moving object. Function f is 

derived by the employed flow model. Having the local flow 

velocity at the place of sensors (M(t)=M1(t), M1(t), …, MNsensor(t)), 

θ(t) can be determined, e.g. the moving object can be reliably 

tracked; however, due to presence of noise in the sensor 

measurements and uncertainty in the employed flow model, there 

is always a tracking error. The tracking error for an arbitrary 

moving object can be minimized by proper section of the ALL 

parameters, including, the shape, size, number and location of 

sensors on the body, which is the goal of this study.  

x
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Figure 1. Illustration of the tracking of a moving object 

2.1. Potential flow model  
Consider a cylindrical object moving through still fluid, where the 

boundary effect can be ignored. Initially the object is assumed to 

be a cylinder with spherical cross-section. Later, the model is 

generalized to an arbitrary cross-section profile using the conformal 

mapping theory. It is also assumed that the cylinder is moving along 

the x−direction while its axis remains aligned with the z-axis. The 

cylindrical object has infinite length, therefore, the flow field is 

two-dimensional (2D) within the x−y plane. The potential flow 

theory is used to describe this flow field.  The complex potential 

wc(z), where z = x+iy is outside the region occupied by the cylinder, 

is given by [19]: 

𝑤𝑐(z) = 𝑣𝑥
𝑅2

𝑧 − 𝑧1
,                                                                        (2) 

where the superscript c denotes that the cross section is circular. vx 

is the constant moving speed, R is a radius of the circular cross-

section, and z1 = xs+iys represents the center of the moving cylinder. 

The corresponding complex flow velocity Wc is computed as 

follows: 

𝑊𝑐(z) =
d𝑤𝑐(𝑧)

d𝑧
= −vx

𝑅2

(𝑧 − 𝑧1)
2 .                                            (3)  

For 𝑊𝑐(𝑧) = 𝑣𝑥
𝑐 + 𝑖𝑣𝑦

𝑐 , the local velocity field can be determined 

as follows:  

𝑣𝑥
𝑐 =

𝑣𝑥𝑅
2((𝑥 − 𝑥𝑠)

2 − (𝑦 − 𝑦s)
2)

((𝑥 − 𝑥s)
2 + (𝑦 − ys)

2)2
,                                             (4) 

𝑣𝑦
𝑐 =

2vxR
2(y − 𝑦s)(𝑥 − 𝑥s)

((𝑥 − 𝑥s)
2 + (𝑦 − 𝑦s)

2)2
.                                                    (5) 

For a cylinder with an arbitrary cross-section profile, the shape of 

the cross-section can be obtained by mapping the circular profile 

with the Laurent series expansion [20]:  

𝜁(𝑧) = (𝑧 − 𝑧1) +
𝜆1

(𝑧 − 𝑧1)
+

λ2
(𝑧 − 𝑧1)

2 +⋯                            (6)  

where 1, 2, …, defines the shape. The resultant shape would be 

symmetric about the x−direction if the shape parameters are real. 

For such a general profile, the complex flow velocity Wg(z) around 

the moving object is calculated as follows: 



𝑊𝑔(z) =  
𝑑𝑤𝑐(z)

d𝑧

dz

d𝜁
                     

= 𝑣𝑥 (−
𝑅2

(𝑧 − 𝑧1)
2)

⏟          
𝑊𝑐(𝑧)

(1 −
𝜆1

(𝑧 − 𝑧1)
2 −⋯)

−1

⏟              
d𝑧
d𝜁
 

,                         (7) 

where z is an arbitrary point outside the cylindrical object. We limit 

our discussion to the case of ellipsoidal profile, where only λ1≥0 is 

nonzero. It is notable that the effect of higher-order terms in this 

equation decays quickly when the distance from the object 

increases. The complex flow velocity We(z) around an ellipsoidal 

cylinder is computed as follows: 

𝑊𝑒(𝑧) =  𝑣𝑥 (−
𝑅2

(𝑧 − 𝑧1)
2) (1 −

𝜆1
(𝑧 − 𝑧1)

2)
−1

                        (8)  

For 𝑊𝑒(𝑧) = 𝑣𝑥
𝑒+𝑖𝑣𝑦

𝑒, it results in: 

𝑣𝑥
𝑒 =

𝑣𝑥𝑅
2((𝑥 − 𝑥s)

2 − (𝑦 − 𝑦s)
2 − 𝜆1)

((𝑥 − 𝑥s)2 + (𝑦 − 𝑦s)2 − 𝜆1)2 + 4(𝑥 − 𝑥s)2(𝑦 − 𝑦s)2
,      (9) 

𝑣𝑦
𝑒 =

2𝑣𝑥𝑅
2(𝑦 − 𝑦s)(𝑥 − 𝑥s)

((𝑥 − 𝑥s)2 + (𝑦 − 𝑦s)2 − 𝜆1)2 + 4(𝑥 − 𝑥s)2(𝑦 − 𝑦s)2
.   (10)  

These equations are employed to compute the local flow around the 

moving cylinder.  

2.2. Extended Kalman Filter 
Kalman filter is one of the most popular and robust techniques for 

estimation of system states subject to measurement and model 

uncertainties. The extended Kalman filter (EKF) is employed in 

this study to track the object because of the nonlinearities in the 

system behavior.  

At the k-th time step, the EKF predicts the state as follows: 

𝜽𝑘 = 𝐀𝑘𝜽𝑘−1                                                                                 (11) 

where  

𝐀𝑘 =

[
 
 
 
 
1 0 0 Δ𝑡 0
0 1 0 0 0
0
0
0

0
0
0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 

, 𝜽𝑘 =

[
 
 
 
 
𝑥𝑠
𝑦𝑠
𝜆1
𝑣𝑥
𝑅2]
 
 
 
 

 

specify the system behavior and state at the k-th time step, 

respectively. The predicted estimate covariance is computed as 

follows: 

𝑷𝑘 = 𝐀𝑘𝐏𝑘−1𝐀𝑘
−1 + 𝐐𝑘                                                                   (12) 

where Qk is the process noise covariance. The optimum Kalman 

gain is computed then: 

𝑲𝑘 = 𝐏𝑘𝐇𝑘
𝑇(𝐇𝑘𝐏𝑘𝐇𝑘

𝑇 + 𝐂𝑘)
−1
, 𝐇𝑘 =

𝜕𝑓(𝜽)

𝜽
|
𝜽=𝜽𝑘

         (13) 

which is used to update the previous estimate on the k-th state: 

𝜽𝑘 ← 𝜽𝑘 +𝑲𝑘(𝐌𝑘 − 𝑓(𝜽𝑘))                                                       (14) 

Finally, the predicted estimate covariance is updated:  

𝐏𝑘 ← (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘                                                                         (15) 

For the time step k+1, this process repeats from equation 11. 

2.3. Simulation of Uncertainties 
The employed flow model assumes some ideal conditions, which 

to some extent, are not available in practice. For example, the 

sensor and the ALL body affect the flow field; therefore, the actual 

local flow velocity is different from the one computed using the 

flow model. At the same time, sensor measurement at the k-th time 

step (Mk) can be slightly different from the true local velocity (Mk) 

due to limited precision of the sensors. These uncertainties are 

simulated into the problem as follows: First, a proportional noise is 

applied to the flow model to simulate the uncertainty of the flow 

model: 

𝑴𝑘 = 𝑓(𝜽𝑘) × exp(𝜀model𝑁(0,1)), 𝑘 = 1,2,… , 𝑁sample       (16) 

where εmodel specifics standard deviation of the relative error of the 

flow model. An additive noise is applied to this value to simulate 

the noisy sensor measurements:  

𝑴𝑘 = 𝑴𝑘 + 𝜀sensor𝑁(0,1),   𝑘 = 1,2, … ,𝑁sample                   (17) 

where εsensor is the standard deviation of the sensor measurement 

error. Following the experiment in [13], εsensor=0.0015 cm/s is 

assumed.  

2.4. Object Tracking Using EKF 
EKF employs an iterative process for which the initial estimate (θ0) 

and the initial values of matrices C, P and Q should be provided. 

For our problem, the initial estimate is generated inside a cube of 

side length of cini, centered on θ0: 

𝜽0 = 𝜽0 + 𝑐ini(𝑼5(0,1) − 𝟎. 𝟓),                                                   (18) 

where U5(0,1) is a vector of five random numbers sampled from the 

standard uniform distribution. The initial values of P (estimate error 

covariance), Q (process noise covariance) and C (measurement 

noise covariance) are p0I, q0I and c0I respectively and are set as 

follows:  

 p0 depends on the value of cini. Since variance of the standard 

uniform distribution is 1/12, we set p0=(cini)2/12. 

 c0 is set to be the variance of sensor uncertainty (εsensor
2). 

 q0 encompasses the effect of model noise. The model noise 

is almost equal to εmodelM, which depends on the location of 

the cylinder. For simplicity, we estimated the average local 

speed by Monte Carlo simulation (Mave≈0.25 cm/s) and then 

set q0 =εmodel Mave.   

These a priori set values are used for analysis of the problem. In 

Section 4.1, the optimum values of these parameters are derived 

and compared with a priori values.  

The object moves all the way from the left to right, inside a 

rectangle above the ALL.  The range of parameters of the cylinder 

are set as follows: 2 cm/s ≤ vx ≤ 10 cm/s; 0 cm2 ≤ λ1 ≤ 9 cm2;1 cm2 

≤ R2 ≤ 9 cm2. 

For each state, the EKF is utilized to update the estimate of the 

parameters of the object. The tracking process starts from xs= ‒10 

cm and continues to xs= +10 cm.    The time interval of sampling is 

0.01 second. Depending on the velocity of the object, the number 

of sampled signals (Nsample) may vary from 200 to 1000. We also 

set cini=5.  

Figure 2 illustrates the tracking results for a sample object with 

θ0=[‒10, 7, 1, 9, 5]. The EKF provides the estimate θk which after 

some steps may converge to the actual object parameters. For a 

given Mk, the tracking error is then defined as follows:    



𝑒𝑘 = ‖[
 𝑥𝑠 − 𝑥𝑠
1 cm

,
 𝑦𝑠 − 𝑦𝑠

1 cm
,
𝜆1 − 𝜆1
1 cm2

,
 𝑣𝑠 − 𝑣𝑠

1
cm
s

,
𝑅𝑠
2 − 𝑅𝑠

2

1 cm2
]‖

𝑘

(19) 

where the underlined parameters refer to the actual object.  This 

equation defines that the tracking error at state k as the Euclidean 

norm of θk−θk, which is made dimensionless to avoid dimension 

mismatch when calculating the norm. The tracking error is 

computed for each of these states, resulting in the vector of errors 

e. Algorithm 1 explains the tracking process and computation of e 

while uncertainties are encompassed in the simulation.   

Algorithm 1. Tracking and calculation of tracking error  

 

 

L1: 

L2: 

L3: 

Input: Initial state of the object 

Output: tracking error e 

Initialize the parameters of the EKF 

generate the initial estimate (θ) randomly  

for k=1 to Nsample    

L4: 

L5: 

L6: 

L7: 

L8: 

 Simulate Mk using equations 16 and 17   

Update θk using the EKF and Mk   

Compute ek using equation 19 

θ1←θ4+ θ1Δt 

θ1←θ4+ θ1Δt 

L9: End 
 

 
Figure 2. Tracking of a sample object a) Sample and the ALL and 

b) tracking estimate (dots) and the true values (continuous lines) 

for a typical cylindrical object  

3. OPTIMIZATION PROBLEM 
The ultimate goal of the ALL design optimization problem is to 

find the optimal shape and size of the body and the locations of 

sensors on its body such that for a given number of sensors, the 

tracking accuracy is maximized. In this section, the design 

optimization problem is formulated and the design parameters, 

their ranges, constraints, the fitness function, and the optimization 

method to solve the problem are explained.  

3.1. Fitness Function 
It should be noted that in general, the cylinder may move anywhere 

in the predefined working area. Since considering all possible cases 

is not possible, the tracking problem is solved for a finite number 

(Ncyl) of cylinders.   A simple fitness function can be defined as the 

mean of all tracking errors; however, the mean is not a robust 

statistic. The mean is highly affected by possible outliers. 

Considering different sources of uncertainties, a robust 

performance measure is strongly desired. The proposed fitness 

function follows this goal. First, a score for tracking accuracy in 

case of a single moving cylinder is defined: 

𝑔(𝑿, 𝜽) = ∑ w𝑘 exp(−𝜁𝑒𝑘
2)

𝑁sample

𝑘=1

,                              (20)                    

which gives a tracking credit based on the tracking accuracy. wi is 

the weight for each estimation: 

𝑤𝑘 =
2𝑘  

𝑁sample × (𝑁sample + 1)
    

more credit is allocated for final estimations. Parameter ζ 

determines how fast the obtained credit reduces when the 

estimation error increases. The calculated credit increases if ζ is 

reduced.  Selection of an appropriate value for this parameter is 

discussed in Section 4.3. The fitness of a design is then computed 

by averaging the credits gained for tracking of Ncyl objects: 

𝑔(𝑿) =
1

𝑁cyl
×∑𝑔(𝑿, 𝜽𝒋)

𝑁cyl

𝑗=1

                                                          (21) 

It is notable that because of sensor and flow model uncertainties, 

random selection of a finite number of moving objects, and random 

initial estimate of the EKF, there is uncertainty in evaluation of the 

fitness, a matter which is common in robust optimization studies 

[21, 22]. The fitness function g(X) is a random function, therefore, 

mean and standard deviation (ḡ, sg) can be computed over multiple 

independent evaluation of a single design. This uncertainty in 

fitness evaluation results in selection noise, which adversely affects 

reliability of the selection operator and as a consequence, the 

quality of the optimized solution.   

3.2. Design Parameters and Constraints 
The conformal mapping technique is employed to define the cross-

section profile of the cylindrical body and the location of sensors 

on it. For the complex plan ℂ and a point 𝜉 ∈ ℂ ,  𝜉 is mapped to z 

with respect to the transformation variable 𝜆 ∈ ℝ using the 

following transformation [19]: 

𝑧 = 𝜉 + 𝑏2 𝜉⁄ , 𝜉 = 𝑅 exp(𝑖𝛽) − 𝜆, 𝑏 = 𝑅 − λ, 𝛽 ∈ [−𝜋, 𝜋).   (22) 

This equation defines a disk of radius R, offset along the real axis 

by 𝜆 ∈ ℝ. By choosing b, we can map the disk to a symmetric, 

streamlined body (Figure 3). Therefore, R and λ specify the size and 

the shape of the body, and βk denotes location of the k-th sensor on 

the fish body. The ALL body turns to a circle and a line segment 

for λ /R =1 and λ /R=0, respectively. Other values between these 

two extremes result in a fish-like ALL.  

ß

ß

ß

ß

ß

1

2

3

4

5

Mapping

 
Figure 3 conformal mapping from a sphere to a streamline body 

Because of symmetry, only the locations of the sensors on the upper 

side of the ALL are independent. Moreover, the object may move 

above the ALL; therefore, the lower part of the ALL is ignored.   

The set of design variables, X=[X1, X2, …, XD] consists of: 

 Size variable: X1min≤X1=R≤X1max 

-10
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0 1 2
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 Shape variable:  X2min ≤X2=λ/R≤ X2max. 

 Angular position of the first sensor on the fish body: 

0≤X3=β1≤βmax. 

 Angular position of the k-th sensor relative to the (k-1)-th 

sensor: 0 ≤Xk=βk-2-βk-1≤βmax , k=4,5, …,Nsensor. 

where Nsensor specifies the number of sensors in the upper part of 

the ALL.  A constrain is defined so that all the active sensors lie on 

the upper part of the ALL: 

 X3+X4+…+XNsensor≤π 

For the rest of this study, the following values for the range of 

design parameters are considered, unless mentioned otherwise: 

X1min=0.5 cm, X1max=4 cm, X2min =0, X2max=1, βmax=4π/Nsensor. 

Furthermore, for ease of construction, the sensing direction of a 

sensor is assumed to be tangent to the body at the place of the 

sensor.  

3.3. Optimization Method 
We employ covariance matrix adaptation evolution strategy 

(CMA-ES) [23] for optimization of these parameters. CMA-ES 

belongs to the category of evolution strategies that adapt the full 

covariance matrix. It was ranked first in BBOB2009 completion on 

noisy continuous parameter optimization [24]. CMA-ES is 

therefore a suitable choice for our noisy problem where for a fixed 

Nsensor, all parameters are continuous.  

All the parameters of CMA-ES are set to the default values, as 

explained in [25], except the population size. For the problem at 

hand, we start from a large population size Smax, but a small value 

of Ncyl, and gradually reduce the population size and increase Ncyl. 

The reason is that a larger population size enables a better global 

exploration in the early iterations; however, since Ncyl is small, the 

noise is great and the population cannot converge to the exact 

location of the optimum. To alleviate this problem, Ncyl is gradually 

increased and the population size is reduced so that the computation 

per iteration does not change much.  

4. PARAMETER STUDY 
To optimize the ALL, Ncyl, ζ, and εmodel should be specified. By 

proper selection of these parameters, we can minimize the selection 

noise or reach a higher tracking accuracy. Selection noise can be 

reduced if the variance among the true fitness of designs is 

maximized or when the variance of the estimated fitness under 

independent evaluations is minimized [13].   Accordingly, 

Selection Reliability Index (SRI) can be defined as follows: 

SRI =
StDev(g̅)

mean(s𝑔)
.                                                                           (23) 

A larger SRI usually refers to a smaller selection noise. A parameter 

study is performed in this section to monitor the effect of different 

parameters on SRI, which helps select a reasonable parameter 

setting. To study the effect of different parameters, 250 random 

designs (X1, X2, …, X250) are generated with Nsensor=4, 6, 8, 10, 12 

(50 of each). Since there are many parameters, we study a few at a 

time while the rest are set to some default values unless mentioned 

otherwise. The default values are as follows: Ncyl=200, ζ=1 and 

εsensor=0.0015 cm/s, while different values of εmodel are considered. 

Parameters of the EKF are set to a priori values. 

4.1. EKF Parameters 
For a fixed value of εmodel and Nsensor, we optimize parameters of the 

EKF (z= [c0, p0, q0]) such that average fitness of 50 random designs 

(with identical number of sensors) is maximized. This procedure is 

performed for εmodel=0.01, 0.05, 0.2 and Nsensor=4, 6, 8, 10, 12, and 

thus 15 vectors of z*(εmodel, Nsensor) are found.  

For optimization, we employ CMA-ES, as discussed in Section 3.3. 

The maximum number of iterations is set to 100 while Ncyl 

increases from 10 to 50 and the population size reduces from 50 to 

10. An exponential transformation of the search space (z=exp(z’)) 

is employed so that z always remains positive and unconstrained 

optimization performs in the z’ space.  

Figure 4a illustrates average fitness of 50 designs with different 

number of sensors, when z*(0.05, 4), z*(0.05, 6), …, z*(0.05, 12) are 

applied as the initial values of the EKF. It demonstrates that z* is 

independent of Nsensor and thus if z* is optimized for Nsensor=4, it can 

be applied to the problem with Nsensor=12 with no reduction in 

fitness. It can also be observed that random designs with more 

number of sensors have a higher fitness on average. 

Figure 4b illustrates that z*(0.05, Nsensor) are not similar; however, 

there is a relation between them: for any two z*, the ratio of [c0, p0, 

q0] is similar. This means only two of these values are independent, 

and multiplication of a given set of initial values by a fixed positive 

number does not change the average fitness.  

Figure 4c illustrates average fitness of 50 designs in situations with 

different values of εmodel, when z*(0.01, 8), z*(0.05, 8), and z*(0.20, 

8) are applied as the initial values of the EKF. Unlike the previous 

case, some dependency of z* on εmodel is observable. More 

importantly, there is significant fitness decline if a priori set values 

are applied as initial condition of the EKF. This demonstrates the 

importance of setting the EKF parameters to their optimal values.  

         
(a)    (b)        (c) 

Figure 4. a) Average fitness of 50 designs evaluated when εmodel=0.05, and z*(0.05, Nsensor) is applied. b) z*(0.05, Nsensor) for εmodel=0.05. c) 

Average fitness of 50 designs when Nsensor=8, and z*(εmodel, 8) is applied as the initial values of the EKF.
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4.2. Effect of Ncyl  
More sample objects provide a more accurate representation of all 

possible objects in the considered range. It also moderates the effect 

of randomness caused by random initial estimates as well as random 

simulated amount of model and sensor errors. The result is a better 

evaluation of the design or equivalently, a smaller sg. This benefit 

comes at the cost of proportional growth of computation time.  

Figure 5 depicts mean (sg) and SRI for the 250 random designs, 

when evaluated 20 times independently. It demonstrates that: 

 A sufficiently great SRI can be reached provided that Ncyl is is 

sufficiently great. This means the disruptive effect of 

evaluation noise can be subsided as much as desired by 

increasing Ncyl. The effect is almost independent of the value 

of εmodel. 

 Mean (sg) demonstrates the limit for accuracy of final results. 

Since the evaluation uncertainty can result in overestimation 

of the fitness up to 2sg, the true fitness of the found global 

minimum value might be 2sg less than the one computed by 

the algorithm. Similarly, sufficiently small values of sg can be 

reached by higher values of Ncyl.  

  

            (a)              (b)                                               

Figure 5. Effect of Ncyl and εmodel on SRI and mean(sg) 

4.3. Effect of ζ 
The fitness function requires parameter ζ to be set.  As it was 

discussed in Section 3.1, a lower ζ returns a higher fitness value. 

The importance of this parameter attributes to its effect on SRI. A 

too small value results in a high fitness (close to one) for all 

solutions, which reduces the variance of the true fitness of different 

designs, and consequently reduces SRI. Similarly, a too large value 

leads to a low fitness (close to zero) for all solutions, which lowers 

SRI as well. In this section, the 250 random designs are evaluated 

for different values of ζ (Ncyl=200). SRI and the average fitness are 

plotted in Figure 6, which demonstrates that ζ≥1 is a proper choice 

considering SRI, although the optimal value depends εmodel as well. 

For the rest of this study, we set ζ=1. 

  

(a)  (b) 

Figure 6. Effect of ζ on a) SRI and b) average fitness for different 

values of εmodel. 

4.4. Estimation of εmodel 

In this section, the value of εmodel is estimated by performing a 

computational fluid dynamics (CFD) simulation and comparing the 

results with those of the employed flow model. A cylinder with 

circular cross-section is moving along the x-axis. The cylinder has 

a diameter of 0.85cm, and velocity of 6cm/s. The motion starts at 

[‒40 cm, 0 cm] at time t=0. To reduce the effect of boundaries, a 

larger tank is considered which spans 120cm in length, 120cm in 

width, and 50cm in depth. The time duration for the translating is 

15 seconds. The CFD simulation was rendered in FLOW-3D® 

which solves Navier-Stokes equations.  

 
(b) 

Figure 7. CFD simulation a) setup b) CFD and flow model results. 

Figure 7 shows the CFD and the potential flow model velocity 

components at the sensors place.  As it can be observed, there is a 

reasonable agreement between the flow model and CDF results. In 

addition to limited size of the tank in the CFD model, consideration 

of viscosity can also justify the difference between the CDF and 

flow model results to some extent. A relative difference of 38% was 

found between the flow model and CFD prediction. If it is assumed 

that the CFD simulation represents the reality, εmodel can be 

computed as follows: 

𝐸[𝜀model|𝒩(0,1)|]  =
∑ (|𝑣𝑥

𝑒 − 𝑣𝑥
CFD|

𝑘
+ |𝑣𝑦

𝑒 − 𝑣𝑦
CFD|

𝑘
)100

𝑘

∑ (|𝑣𝑥
CFD|

𝑘
+ |𝑣𝑦

CFD|
𝑘
)100

𝑘

.     (24) 

Using this equation and the CFD simulation results concludes to 

εmodel=0.48, which is rather high value.  

5. OPTIMIZATION RESULTS  
We consider two cases with different amount of model uncertainty 

(εmodel=0.01, 0.20). The ALL is optimized using CMA-ES given the 

optimum parameters of the EKF. The trade-off between the number 

of sensors and the accuracy of tacking is investigated by running 

CMA-ES for different values of Nsesnor independently. The 

population size reduces from 150 to 30 while Ncyl increases from 

200 to 1000. The evaluation budget is limited to 3×106 sample 

objects.  

For each value of εmodel and Nsensor, CMA-ES is run five times 

independently. Figure 8 depicts the final solutions for εmodel=0.01 

and 0.20 for the case Nsensor=6. The average values of size parameter 

(R) and shape (λ/R) are plotted as a function of Nsensor in Figure 9. 

To check dependency of the final solutions on the εmodel, the final 

solutions for εmodel=0.01 and εmodel=0.20 are reevaluated in both 

conditions of εmodel=0.01 an εmodel =0.20 with a large number of 

sample objects (Ncyl=10000). The reevaluated fitness is plotted in 

Figure 10.  The obtained results reveal: 
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(a) 

 

(b) 

Figure 8. Final solution for Nsensor=6 when a) εmodel=0.01 and b) 

εmodel=0.20 

  
(a)       (b) 

Figure 9. Average values of the size (R) and shape (λ/R) 

parameters in the final designs 

 

  
(a)    (b) 

Figure 10. Average fitness of the optimized designs for εmodel=0.01 

and εmodel=0.20 reevaluated in the condition of εmodel=0.01 and 

εmodel=0.20 

 For a fixed amount of uncertainty, the final solutions of 

independent runs are similar (Figure 8). This can be regarded 

as a checkpoint for efficacy of the optimization tool.  

 The shape parameter is smaller for εmodel=0.20 (Figure 9). For 

both cases, the size parameter (R) has reached the upper bound 

A larger design enables measuring local velocity at different 

regions and therefore improves the diversity of the information 

gathered by the sensors; however, it occupies a larger region. 

Assuming the objects cannot move through the ALL, a larger 

design limits the situations in which an object can be tracked.  

 For the case with low uncertainty, increasing the number of 

sensors is advantageous up to Nsensor=4 (Figure 10). After that, 

the extra sensors do not provide any contribution for tracking. 

In fact, the fitness of the optimized designs declines for 

Nsensor≥12. One reason for this observation can be the 

complexity in the problems with more number of sensors, e.g. 

more design parameters, which demands a more computation 

budget. The evaluation budget of CMA-ES was independent 

of the number of design parameters; therefore, the algorithm 

could not properly explore the search space for  Nsensor≥12.   

 For the case with high amount of uncertainty, increasing Nsensor 

continually improves the tracking accuracy. This means the 

contribution of extra sensors is significant in comparison with 

the increased problem complexity. 

 The ALL optimized for εmodel=0.01 is not the optimal one for 

εmodel=0.20 (Figure 10). This means the optimal design 

depends on the mount of uncertainty.   

6. SUMMARY AND CONCLUSIONS 
In this study, design of artificial lateral line system was optimized 

for maximizing tracking accuracy for an arbitrary moving object by 

using extend Kalman filter. The parameters of the filter were 

optimized as well. Trade-off between the number of sensors and the 

tracking accuracy was also analyzed for different amount of 

uncertainties.  

It was demonstrated that for this problem, the optimal setting of 

parameters of the extended Kalman filter plays a significant role in 

reliability of tracking. A priori set values turned out to be far from 

the optimal ones, determined by performing parameter 

optimization.  Our numerical results revealed dependency of the 

optimum design as well as the filter parameters on the amount of 

uncertainty. The obtained trade-off between the number of sensors 

and tracking accuracy can provide useful information to determine 

the number of sensors in the design. For our problem, the trade-off 

demonstrated that the contribution of extra sensors can be 

significant when the uncertainty is high, while it is negligible when 

the uncertainty is small.  
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