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In this work the issue of wave-induced flow structures that develop around a large-

diameter surface-piercing vertical circular cylinder is addressed. A strictly-linear wave 

case is considered and simulated numerically, solving the Euler equations in primitive 

variables, and the results are compared with those obtained from the corresponding 

close-form velocity-potential solution. Then, the swirling-strength criterion for flow-

structure eduction is applied to the primitive-variable Euler-equations-derived velocity 

field. It is found that differently-shaped flow structures develop at the free surface and 

under the free surface, in particular at the cylinder wall. This field of structures is not 

detectable from the potential-derived velocity field, due to the purely mathematical 

nature of the latter. 

1.   Introduction 

In coastal engineering, a widely-used tool for the investigation of wave 

phenomena is the velocity potential, in which both hypotheses of inviscid fluid 

and irrotational flow are incorporated. In some cases, a close-form analytical 

expression of the potential can be devised. In other cases - especially in complex 

problems of contemporary coastal engineering - no expressions of the potential 

exist, so that the system of the Euler equations, cast in terms of the potential, can 

be solved with numerical means, generally with the use of numerical techniques 

of integral nature.  It can be recognized, though, that the assumptions of both 

inviscid fluid and irrotational flow are rather restrictive, as related to physical 

phenomena in which real fluids and rotational flows are actually involved. If one 

wants to give up the hypothesis of irrotational flow, an appropriate strategy for 

the investigation of wave-related phenomena is represented by the numerical 

integration of the Euler equations in velocity-pressure formulation. Under this 

viewpoint it becomes of remarkable importance to investigate the differences 

that exist between a flow field derived from a velocity potential, and one 

resulting from the numerical solution of the Euler equation in primitive 

variables, for the problem at hand.  In this work these issues are addressed, with 
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reference to the case of the diffraction of water waves by large-diameter, surface 

piercing, vertical circular cylinder. The close form velocity potential for this case 

is first analyzed (as devised by MacCamy and Fuchs [1]), related to a strictly-

linear wave case. Then, the same wave case is simulated numerically, solving the 

Euler equations in primitive variables. For further investigation of the flow 

fields, the swirling-strength criterion for flow-structure detection (as devised by 

Zhou, Adrian, Balachandar and Kendall [2]) is applied to the primitive-variable 

Euler-equations-derived velocity field. It is found that (irrotational) flow 

structures of tubular type develop at the free surface, and structures with more 

complex shape develop under the free surface, in particular at the cylinder wall. 

2.   Wave Diffraction and Velocity-Potential Solution 

It is well known that, in the case of water waves impinging a vertical circular 

cylinder, wave diffraction becomes relevant when 20.LD   (D=2a is cylinder 

diameter L is wave length), in conjunction with the condition that the value of 

the Keulegan-Carpenter number KC at the still-water level be limited as 

 LD.KC 440 . By representing the different wave regimes in graphical form 

in terms of KC and LH  (H is wave height), the implementation of the above 

expressions translates in the identification of a zone in which diffraction is 

increasingly important and the phenomenon is strictly linear (other zones can 

also be distinguished in which, for example, diffraction is influenced by 

nonlinear effects, see among others Sarpkaya and Isaacson [3]). As  concerns the 

phenomenon of the diffraction of linear (water) waves by large-diameter, 

bottom-fixed, surface-piercing vertical circular cylinder, a close form solution in 

terms of the velocity potential has been devised by MacCamy and Fuchs [1] in 

terms of Bessel and Hankel functions (see also [3]), as: 
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(d is still-water level, g is gravity), where from expression (1) the velocity field 

( ii xφu  ) and other relevant quantities can be derived. The maximum 

nondimensional runup ND

MR and the maximum nondimensional force ND

MF  on the 

cylindrical body are given by the following expressions ( ρ is fluid density): 
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Figure 1.  Sketch of the computing domain. 

3.   Numerical Integration of the Primitive-Variable Euler Equations 

The system of the Euler equations in velocity-pressure formulation is now 

considered (the fluid in incompressible and inviscid, the flow is not necessarily 

irrotational, iu  is velocity, p is pressure): 
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For the execution of the calculations, the Flow-3D finite-volume 

computational code has been used. In this code, the free-surface condition is 

handled with the VOF (volume of fluid) method, that has extensively proven to 

be able to accurately tracking a wave interface. The meshing technique does not 

induce mesh distortion during transients (a multi-block meshing technique can be 

also used to provide higher resolutions in the calculations, where needed). The 

time-marching procedure includes three main steps: i) evaluation of the velocity 

in each cell using the initial conditions (or previous-time-step values) for the 

advective pressures (and/or other accelerations), on the basis of appropriate 

explicit approximations of the governing equations; ii) adjustment of the 

pressure in each cell to satisfy the continuity equation; iii) updating of the fluid 

free surface to give the new fluid configuration based on the volume-of- fluid 

value in each cell. In the present calculations, the available solution scheme 
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Table 1a. Wave characteristic parameters. 

 

 D (m) L (m) T (s) H (m) d (m) D/L KC ka kd H/L 

________________________________________________________________ 

 12.0 45.1 5.4 2.65 18.0 0.26 0.70 0.84 2.51 0.06 

 

Table 1b. Main computational parameters. 

xL (m) yL (m) zL (m) xN  yN  zN  x (m) y (m) z (m) tott (s) 

________________________________________________________________ 

 90.2 90.2 36.0 450 450 360 0.20 0.20 0.10 54.1 
 

Table 1c. Results. 

 ND
MR  Error rel. to expr. (2) ND

MF  Error rel. to expr. (3)  

________________________________________________________________ 

 0.84 -1.40% 2.04 -3.27% 

 

based on the Generalized Minimal Residual (GMRES) method has been used. A 

specially-assembled computing system has been used for the simulations, that 

includes 2 Intel Xeon 5660 exa-core multi-core processors (a total of 12 CPUs 

available), a maximum of 48 GB of RAM, and up to 1.8 TB of mass memory. 

Boundary conditions of free-slip (and zero wall-normal velocity) have been 

imposed on the x-y bottom plane of the computing domain (see at Figure 1), and 

at the cylinder external surface. On the two x-z lateral boundary planes and on 

the y-z end-plane of the computing domain, outflow conditions have been set, 

while the free-surface condition holds at the wave surface. On the y-z inlet plane, 

the flow field corresponding to an incident linear wave (with the desired 

characteristic parameters) is generated, and enters the computational domain 

through the mesh inlet boundary. For the ( pui  ) Euler-equation simulations, a 

strictly-linear wave case has been selected, with given characteristic parameters. 

These parameters are reported in Table 1a, in conjunction with the main 

computational quantities (Table 1b). In time, the simulations have been run for a 

total time Tttot 10 (T is wave period). Once the results of the simulations 

have been obtained, the values of ND
MR  and ND

MF  have been calculated, and 

compared with those given by expressions (2) and (3), as shown in Table 1c. 

4.   Flow-Structures Eduction  

Among the existing techniques for vortex eduction, for the scopes of present 

work, the swirling-strength criterion as devised by Zhou, Adrian, Balachandar 

and Kendall [2] has been adopted (one can refer to Alfonsi [4] for an extensive 

review of these subjects). By considering the system of the flow governing 
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equations, an arbitrary point O can be chosen in the field, and a Taylor-series 

expansion of each velocity component can be performed in terms of space 

coordinates with the origin in O. If O is located at a critical point, the zero-order 

terms are zero. From the characteristic equation of the velocity-gradient tensor 

ijA , one has: 

 023  RλQλPλ  (6) 

where: 

  ijAtrP  ;           22

2

1
ijij AtrAtrQ  ;        ijAdetR   (7) 

are the scalar invariants of the velocity-gradient tensor. In the case of 

incompressible flow, 0P , and equation (6) becomes: 

 03  RλQλ  (8) 

When the discriminant of (8) is positive, the velocity-gradient tensor has one 

real eigenvalue ( 1λ ) and a pair of complex-conjugate eigenvalues ( 32 λ,λ ). Zhou 

et al. [2] adopted the criterion of identifying vortices by visualizing isosurfaces 

of prescribed values of the imaginary part of the complex-eigenvalue pair of the 

velocity-gradient tensor. One has: 

 rλλ 1 ;     cicr λiλλ 2 ;     cicr λiλλ 3  (9) 

The swirling strength ( ciλ ) represents a measure of the local swirling rate inside 

a vortical structure, so that isosurfaces of the imaginary part of the complex 

eigenvalue pair of the velocity-gradient tensor can be used to visualize vortices. 

The method is general and does not incorporate any restrictive hypotheses. 

Moreover, the method is frame independent and, due to the fact that the 

eigenvalue is complex only in regions of local circular or spiralling streamlines, 

it automatically eliminates regions having vorticity - if any - but no local 

spiralling motion.  



 778 

 
 

Figure 2.  General view of flow structures in the computing domain at Euler
FMtt  . 

5.   Results  

Results in terms of flow-structure visualizations are shown in Figures 2/3/4/5 

(the threshold value of ciλ  used for the visualizations is   1050  s.λ
thci ). In 

Figure 1 a general view of the full computing domain is given. The flow field is 

rather regular and substantially symmetric, and exhibits a number of tubular 

(irrotational) structures, concentrated at the free surface. From the distribution of 

the tubular structures one also obtains a perception of the free-surface 

configuration in terms of wave crests and troughs, and also of other phenomena, 

like the accumulation of fluid mass upstream from the cylinder. When the 

tubular structures are only present at the free surface, other types of structures 

develop under the surface (arrows 1/2/3 in Figures 3/4/5). The establishment of 

these structures represents the more relevant difference between the primitive-

variable Euler-equations-derived flow field and that derived from the velocity-

potential solution, and unveils a physical phenomenon that is impossible to 

detect from the analysis of the φ derived field, in virtue of the pure 

mathematical nature of the latter.  Figures 3/4/5 show some close-up views under 

the free surface and near the cylinder external surface, at Euler

FMtt  . Arrow 1 

indicates an (irrotational) flow structure that develops slightly upstream from the 

cylinder. This structure appears to be the underwater counterpart of the 

phomenon of accumulation of fluid mass that verifies - at the surface - upstream 

from the cylinder, when a wave crest approaches the cylinder.  Arrow 2 indicates 

a flow structure that develops at the cylinder external surface, on the upstream 

side. This is the most complex and extended structure that has been observed. At 
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the cylinder basis, a specific substructure develops (arrow 3), that reflects the - 

inviscid - interaction between fluid, cylinder and bottom wall. This substructure  
 

 
Figure 3.  Flow structures at cylinder wall. Front/right view at Euler

FMtt  . 

 

actually represents the inviscid equivalent of the well-known horseshoe vortex 

that verifies in viscous-fluid flows. Less-extended structures are also present on 

the cylinder sides (with respect to the upstream-downstream direction). 

6.   Concluding Remarks 

In this work, the phenomenon - relatively-well known in the framework of 

potential-flow theory - of diffraction of water waves caused by large- diameter 

surface-piercing vertical circular cylinder has been investigated. The study has 

been performed by integrating numerically the Euler equations in primitive  
 

 
Figure 4.  Flow structures at cylinder wall. Front/left view at Euler

FMtt  . 
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Figure 5. Flow structures at cylinder wall. Front view at Euler
FMtt  . 

 

variables, so that a flow field has been calculated, resulting from the solution of 

the momentum- and mass-conservation equations. After the application of the 

swirling-strength criterion for flow-structure eduction, differently-shaped 

structures have been detected in the field. Some of them - of tubular type - are 

concentrated at the free surface, some others are located under the wave surface, 

and in particular at the external surface of the cylindrical body. The knowledge 

of the spatial and temporal behavior of such structures represents a valuable 

source of information as concerns the development of relevant local effects onto 

the cylindrical body, caused by the wave motion. 
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