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Abstract. Solitary wave runup on a non-plane beach is
studied analytically and numerically. For the theoretical
approach, nonlinear shallow-water theory is applied to ob-
tain the analytical solution for the simplified bottom geom-
etry, such as an inclined channel whose cross-slope shape
is parabolic. It generalizes Carrier-Greenspan approach for
long wave runup on the inclined plane beach that is currently
used now. For the numerical study, the Reynolds Averaged
Navier-Stokes (RANS) system is applied to study soliton
runup on an inclined beach and the detailed characteristics
of the wave processes (water displacement, velocity field,
turbulent kinetic energy, energy dissipation) are analyzed.
In this study, it is theoretically and numerically proved that
the existence of a parabolic cross-slope channel on the plane
beach causes runup intensification, which is often observed
in post-tsunami field surveys.

1 Introduction

For the mitigation of tsunami hazard, the estimation of the
characteristics of the flooding zone of the tsunami attack is
one of the most important aspects of research. Analytical
and numerical methods are widely applied to analyze the
tsunami wave runup characteristics. Taking into account the
usual large scales of tsunami waves induced by strong earth-
quakes, the depth-averaged 1-D and 2-D models of nonlinear
shallow-water theory are used to study tsunami wave trans-
formation and runup. Some of the numerical models (TU-
NAMI, MOST, etc.), adapted to the global ocean bathymetry
datasets, are currently used in tsunami research (Goto et al.,
1997; Titov and Gonzalez, 1997). Observed data, as well
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as data from laboratory experiments, are applied to verify
the numerical models. The analytical approach, developed
for the simplified beach geometry (plane beach of constant
slope) and based on the Carrier-Greenspan transformation of
shallow-water equations, is also applied to analyze tsunami
runup characteristics (Yeh et al., 1997; Pelinovsky, 1997; Liu
et al., 2007).

Real bottom bathymetry and coastal topography are much
more complicated than the idealized plane beach. Runup of
long waves on beaches of complicated bathymetry is stud-
ied numerically, mainly in the framework of shallow-water
theory, see for instance (Zelt, 1986, Liu et al., 1995; Ozkan-
Haller and Kirby, 1997; Titov and Synolakis, 1997; Broc-
chini et al., 2001). It is also the case that the wave field
has large variability in temporal and spatial scales, especially
with different near-shore conditions, where full 3-D flow
characteristics appear. For these reasons, the existing ana-
lytical and numerical models are still not sufficient enough
to explain many natural phenomena such as extreme runup
height often observed in tsunami field surveys. For exam-
ple, in 1993, southwest of Hokkaido, an earthquake in the
Japan (East) Sea caused more than a 30-m runup height near
Hamatsumae (Hokkaido Tsunami Survey Group, 1993). It
is anticipated that this anomalously large runup height was
mainly caused by the unique geometrical shape that is the
existence of a channel on the beach whose cross-slope shape
is parabolic in form. To explain such extreme runup phenom-
ena, more accurate analytical and numerical models need to
be developed, and some of the recent progress in this field
is summarized in Dalrymple et al. (2006), Pelinovsky (2006)
and Liu et al. (2007).

The main goal of this paper is to study the runup of solitary
waves on non-plane beaches analytically and numerically.
The rigorous analytical solution of the nonlinear shallow-
water equations for the wave runup on the beach in a channel
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height in the channel whose cross-slope shape is parabolic is larger than that of simple shaped 

cross-slope (section 2). Numerical simulations of solitary wave runup on an inclined beach 

with parabolic cross-slope shape are performed in the framework of the 3D Reynolds 

Averaged Navier – Stokes system (section 3). Detailed characteristics of the wave processes 

(water displacement, velocity field, turbulent kinetic energy and energy dissipation) are 

analyzed and compared. Results of 3D computations are compared, particularly with the 

experimental data of Zelt (1986) reproduced in 2D simulations by Ozkan-Haller and Kirby 

(1997), and analytical formulas for soliton runup. 

 

2. Analytical theory of long wave runup on beaches in a narrow bay of 

parabolic shape  

Usually tsunami waves generated by strong earthquakes have long wavelengths compared to 

water depth (in the order of hundreds of km), and their fronts are almost straight (quasi-plane 

waves). The characteristic width of the inclined channel we are interested in is significantly 

smaller than wave length (in the order of 10 km), so that waves entering such channels are 

assumed to have uniform flow in the cross-section. For simplicity, we assume the analytical 

expression for the bottom shape as 

 

z x y h x f y( , ) ( ) ( )= − + .                                                         (1) 

 

This geometry is displayed in Figure 1. If the wave propagates along the x-axis, the two-

dimensional equations of nonlinear shallow water theory can be integrated on the cross-

section, and the corresponding equations are one-dimensional: 
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Fig. 1. The characterized cross-section and longitudinal projection of the bay 
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Fig. 1. The characterized cross-section and longitudinal projection
of the bay.

of parabolic cross-slope shape is obtained. It generalizes the
Carrier-Greenspan transformation that is currently used for
the long wave runup on a plane beach of constant slope. It
is theoretically shown that the runup height in the channel
whose cross-slope shape is parabolic is larger than that of
simple shaped cross-slope (Sect. 2). Numerical simulations
of solitary wave runup on an inclined beach with parabolic
cross-slope shape are performed in the framework of the 3-
D Reynolds Averaged Navier-Stokes system (Sect. 3). De-
tailed characteristics of the wave processes (water displace-
ment, velocity field, turbulent kinetic energy and energy dis-
sipation) are analyzed and compared. Results of 3-D com-
putations are compared, particularly with the experimental
data of Zelt (1986) reproduced in 2-D simulations by Ozkan-
Haller and Kirby (1997), and analytical formulas for soliton
runup.

2 Analytical theory of long wave runup on beaches in a
narrow bay of parabolic shape

Usually tsunami waves generated by strong earthquakes have
long wavelengths compared to water depth (in the order of
hundreds of km), and their fronts are almost straight (quasi-
plane waves). The characteristic width of the inclined chan-
nel we are interested in is significantly smaller than wave
length (in the order of 10 km), so that waves entering such
channels are assumed to have uniform flow in the cross-
section. For simplicity, we assume the analytical expression
for the bottom shape as

z(x, y) = −h(x) + f (y). (1)

This geometry is displayed in Fig. 1. If the wave propagates
along the x-axis, the two-dimensional equations of nonlinear
shallow water theory can be integrated on the cross-section,
and the corresponding equations are one-dimensional:

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= g

dh

dx
,

∂S

∂t
+

∂

∂x
(Su) = 0, (2)

where H(x, t)=h(x)+η(x, t) is the total depth along the
channel,η(x, t) is the displacement of the water surface,
S(x, t) is the area of the cross-section of the channel, and
u(x, t) is the mean flow velocity. Integration of (1) makes

the system (2) closed, and the solution depends on the beach
geometry. The general approach to solve analytically the sys-
tem (2) is suggested in (Zahibo et al., 2006). Here we con-
sider a bay of parabolic shape

f (y) = qy2, (3)

therefore, the function,S is

S =
4

3q1/2
H 3/2, (4)

whereq is an arbitrary constant. The next approximation is
a constant bottom slope of the channel axis; thus

h(x) = −αx. (5)

The system (2) under these conditions reduces to

∂u

∂t
+u
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+g

∂H

∂x
= g

dh
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,

∂H

∂t
+u

∂H
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+

2

3
H

∂u

∂x
= 0, (6)

and differs from the “classical” one-dimensional equations
for the wave runup on plane beach by the constant coeffi-
cient 2/3. As a result, the same methods of solution of the
hyperbolic system like the hodograph transformation can be
applied for such geometry.

Introducing the Riemann invariants

I± = u ± 2

√
3

2
gH + αgt, (7)

the system (6) is re-written in the form

∂I±

∂t
+ c±

∂I±

∂x
= 0, (8)

where the characteristic speeds are

c± =
2

3
I± +

1

3
I∓ − αgt. (9)

Multiplying (8) on the Jacobian∂(t, x)/∂(I+, I−), assum-
ing that it is not zero (this value is achieved when the wave
“breaks”), it can be transformed to

∂x

∂I∓

− c±

∂t

∂I∓

= 0. (10)

The system (10) is nonlinear, due to the dependencec± from
I±, but it can be reduced to linear by eliminatingx

∂2t

∂I+∂I−

+
2

I+ − I−

(
∂t

∂I−

−
∂t

∂I+

)
= 0. (11)

Let us introduce new arguments:

λ =
I+ + I−

2
= u + αgt, (12)

σ =
I+ − I−

2
=

√
6gH. (13)
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Then, Eq. (11) takes the form

∂2t

∂λ2
−

∂2t

∂σ 2
−

4

σ

∂t

∂σ
= 0. (14)

Extracting time from (12) and substituting

u =
1

σ

∂8

∂σ
, (15)

Eq. (14) is re-written in the final form

∂28

∂λ2
−

∂28

∂σ 2
−

2

σ

∂8

∂σ
= 0. (16)

In terms of the new variables, the physical variables can be
expressed as

η =
1

2g

[
2

3

∂8

∂λ
− u2

]
, u =

1

σ

∂8

∂σ
, (17)

x =
η

α
−

σ 2

6gα
, t =

λ − u

gα
. (18)

The Eq. (16) can be reduced to the 1-D wave equation, and
its solution can be presented explicitly through two arbitrary
functions

8(λ, σ ) =
91(λ − σ) + 92(λ + σ)

σ
. (19)

Taking into account that from physical point of view the
function 8 should be bounded everywhere including the
moving shorelineσ=0, and therefore only one arbitrary func-
tion 9 is in the solution (19). It transforms to

8(λ, σ ) =
9(λ − σ) − 9(λ + σ)

σ
. (20)

So, the initial set of nonlinear shallow water equations has
the analytical solution (20) and all physical variables can
be found via function8(λ.σ) using simple operations. The
main advantage of this form is that the moving (unknown)
shoreline now corresponds toσ=0 (since the total depth
H=0) and therefore, solution (20) is determined in the half-
line −∞<σ<0 with fixed boundary. Such transformation
generalizes the Carrier-Greenspan transformation (Carrier
and Greenspan, 1958) actively used in the theory of long
wave runup on plane beaches (Spielfogel, 1976; Pedersen
and Gjevik, 1983; Synolakis, 1987; Pelinovsky and Mazova,
1992; Pelinovsky, 1996; Carrier et al., 2003; Kânŏglu, 2004;
Tinti and Tonini, 2005; K̂anŏglu and Synolakis, 2006; Di-
denkulova et al., 2006; Antuono and Brocchini, 2007). It is
important to mention that in the case of the “parabolic” cross-
slope we have the simplified analytical solution to compare
with the classical case of a plane slope beach when the gen-
eral solution can be expressed in the integral form only. As a
result, only algebraic manipulations are required to describe
the tsunami wave runup on a beach. In fact, this approach
for a parabolic bay was developed in the paper (Zahibo et al.,

2006) and is reproduced here for better understanding of the
analytical solution obtained below.

The solution (20) has evident physical sense and describes
the reflection of incident waves from the beach. In the case of
non-breaking and non-dissipative waves the reflected wave
has the same parameters as the incident wave, but opposite
polarity. In this case where the incident wave is far from
the beach where it is linear, it can be described by the linear
expressions that follow from (17) and (18)

ηin(x, t) =
1

3g
√

6gh(x)

∂9(λ −
√

6gh)

∂λ

∣∣∣∣
λ=gαt

, (21)

where the argument of the incident wave is

λ −
√

6gh(x) = gα

[
t −

√
6|x|

gα

]
, (22)

and the last term presents the travel time in a basin of variable
depth,

∫
dx/c(x), wherec(x)=[2gh(x)/3]

1/2 is the linear
long wave speed in the parabolic channel. Wave amplitude
is proportional toh−1/2 according to the Green’s law for a
parabolic channel. Fixing the distance from the beach,L or
equivalent depth,h0=αL, we may determine the function9
knowing the time series of the tsunami wave at this point. In
particular, if the incident tsunami wave is a solitary wave

ηin(t) = Asech2
[
t−t0

T

]
(23)

with arbitrary amplitude, duration and phase, the function9

is

9(λ) = 3g2αT A
√

6gh0 tanh

[
λ − λ0

gαT

]
(24)

and the solution (20) becomes fully determined. The calcula-
tion of the wave field (water elevation and particle velocity)
requires algebraic manipulations using (17) and (18).

Here we consider the runup characteristics only. The dy-
namics of the moving shoreline are given by (17) and (18)
at σ=0, thus the vertical displacement and velocity of the
shoreline can be expressed as a function of time by paramet-
ric curves

R(λ) = η(λ, 0) =
1

2g

[
2

3

∂8

∂λ
− u2

]
, (25)

u(λ, 0) =
1

σ

∂8

∂σ
, t =

λ − u(λ, 0)

gα
,

where8 is determined by (20) and9 by (24). In particular, if
the amplitude of the incident wave is small, we may neglect
nonlinear terms in (25). Also, from (20), on the shoreline
(σ→0), it follows that8(λ, σ=0)=−2∂9/∂λ ∼ ηinc, (see
Eq. 21). As a result, the simplified formula for the vertical
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length of these solitons is large and comparable with the distance to the shore. In the limited 

case of a very large wavelength, the beach plays the role of a vertical wall, where Rmax ≈ 2A 

(this result is evident if the plane beach is matched with a bottom of a constant depth). 

Pelinovsky (1996) and Madsen and Fuhrman (2007) demonstrated that the asymptotic 

expression (30) can be applied in the range of Rmax > 2A for a plane beach. The same can be 

assumed for a parabolic beach. From the condition Rmax = 2A, follows the minimal value of 

the soliton amplitude when formulas (29) and (30) are valid 

 

2min αq
h

A
= ,                                                              (31) 

 

where q = 9/16 = 0.563 for a parabolic beach, and (2/2.8312)4 = 0.249 for a plane beach. 

Figure 2 demonstrates the maximal runup height for two beach geometries: plane and 

parabolic beaches, with beach slope α = 0.1. The parabolic shape of the beach in this case 

leads to the concentration of wave energy near the beach and an increase in the runup height. 

A more detailed comparison of formulas (29) and (30), taking into account the limitation (31), 

is given in Figure 3. It confirms that generally, the amplification on the parabolic beach is 

higher than on a plane beach, but for limited conditions of wave amplitude and bottom slope 

the runup height in a parabolic channel is less then on a plane beach.  
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Fig. 2. Runup height of a solitary wave on a plane beach (solid red line) and a parabolic beach 
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Fig. 2. Runup height of a solitary wave on a plane beach (solid red
line) and a parabolic beach (dash blue line), slopeα=0.1.

displacement of the water level on a shore can be obtained
from

R(t) = −
2
√

6L
√

gh0

dηin(t − τ)

dt
, (26)

whereτ is the wave travel time from a fixed point to the
shore. It is important to mention that oscillations at the shore-
line end after the wave reflects. This differs from the case of
a plane beach, where oscillations formally continue for infi-
nite time. For moderate amplitudes the dynamics of the mov-
ing shoreline can be plotted from (25). However, it is easy
to show that for any values of the incident wave amplitudes
(in a non-breaking regime) the maximal values of runup and
rundown can be found as extremes of the function (26) as in
linear theory the velocities are too small in phases of high
or low water (the same situation exists for a plane beach).
As a result, the maximum runup height is calculated trivially
for any shape of incident wave. In particular, when a soli-
tary wave approaches to the beach, maximum vertical runup
height is

Rmax

A
=

16

3
√

3

L

λ0
, (27)

where λ0=c0T is the characteristic soliton length, and
c0=(2gh0)/31/2 is the linear speed of long waves in the
parabolic channel. The formula (27) differs significantly
from that in the case of the plane beach, where factorL/λ

has the exponent 1/2, (Pelinovsky and Mazova, 1992; Peli-
novsky, 2006). In fact, formula (27) can be obtained for an
incident wave of arbitrary shape and only the numeric co-
efficient will be changed. If we use as the initial wave the
solitary wave solution of the Korteweg-de Vries equation for
an even bottom

η(x) = Asech2
[√

3A

4h0

x

h0

]
, (28)
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Fig. 3. Comparison of runup heights for planar and parabolic beaches 

 

Therefore, the rigorous solution of the nonlinear shallow water equations confirms the 

frequent observation that tsunami waves in bays with a decreasing cross-section are more 

energetic, and runup heights are usually larger than in basins with a constant cross-section. 

 

3. Three-dimensional runup computations  

The bottom geometry used in the numerical simulations is presented in Figure 4. The 

numerical tank has the dimensions: length, 13 m; width, 3.6 m; height, 0.55 m; water depth, 

0.35 m. At the end of the tank there is the inclined wall (slopes: 30º, 45º0 and 60º) containing 

a concaved semi-cylinder with radius 1.2 m. This geometry should adequately demonstrate 

the “non-plane” effects during the runup process.  

For detail computing of the solitary wave runup, the CFD code FLOW-3D developed by Hirt 

and Nichols (1981) is applied. The program solves the 3D Reynolds-Averaged Navier-Stokes 

(RANS) equations with a free boundary. The details of the code are described in Flow-

Science, 2002. In a previous study (Choi et al., 2007), we applied this code to study solitary 

wave runup on a conical island, and the model accuracy was verified by comparing the 

numerical results with the analytic solution and 2D shallow water model results (Liu et al., 
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Fig. 3. Comparison of runup heights for planar and parabolic
beaches.

the runup formula can be rewritten in the another form

Rmax =
8

3

A

α

√
A

h0
∼ A3/2 (29)

For comparison we also provide the similar formula for a
plane beach (Synolakis, 1987)

Rmax = 2.8312
A

√
α

(
A

h0

)1/4

∼ A5/4. (30)

Recently, Antuono and Brocchini (2007) found the high-
order correction to (30). We should mention that formu-
las (29) and (30) are not valid for weak amplitudes of soli-
tons, since the length of these solitons is large and com-
parable with the distance to the shore. In the limited case
of a very large wavelength, the beach plays the role of a
vertical wall, whereRmax≈2A (this result is evident if the
plane beach is matched with a bottom of a constant depth).
Pelinovsky (1996) and Madsen and Fuhrman (2008) demon-
strated that the asymptotic expression (30) can be applied in
the range ofRmax >2A for a plane beach. The same can be
assumed for a parabolic beach. From the conditionRmax=2A
follows the minimal value of the soliton amplitude when for-
mulas (29) and (30) are valid

Amin

h
= qα2, (31)

where q=9/16=0.563 for a parabolic beach, and
(2/2.8312)4=0.249 for a plane beach.

Figure 2 demonstrates the maximal runup height for two
beach geometries: plane and parabolic beaches, with beach
slopeα=0.1. The parabolic shape of the beach in this case
leads to the concentration of wave energy near the beach and
an increase in the runup height. A more detailed compari-
son of formulas (29) and (30), taking into account the limi-
tation (31), is given in Fig. 3. It confirms that generally, the
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amplification on the parabolic beach is higher than on a plane
beach, but for limited conditions of wave amplitude and bot-
tom slope the runup height in a parabolic channel is less then
on a plane beach.

Therefore, the rigorous solution of the nonlinear shal-
low water equations confirms the frequent observation that
tsunami waves in bays with a decreasing cross-section are
more energetic, and runup heights are usually larger than in
basins with a constant cross-section.

3 Three-dimensional runup computations

The bottom geometry used in the numerical simulations is
presented in Fig. 4. The numerical tank has the dimen-
sions: length, 13 m; width, 3.6 m; height, 0.55 m; water
depth, 0.35 m. At the end of the tank there is the inclined
wall (slopes: 30◦, 45◦ and 60◦) containing a concaved semi-
cylinder with radius 1.2 m. This geometry should adequately
demonstrate the “non-plane” effects during the runup pro-
cess.

For detail computing of the solitary wave runup, the CFD
code FLOW-3D developed by Hirt and Nichols (1981) is
applied. The program solves the 3-D Reynolds-Averaged
Navier-Stokes (RANS) equations with a free boundary. The
details of the code are described in Flow-Science, 2002. In
a previous study (Choi et al., 2007), we applied this code
to study solitary wave runup on a conical island, and the
model accuracy was verified by comparing the numerical re-
sults with the analytic solution and 2-D shallow water model
results (Liu et al., 1995) for solitary wave propagation over
constant depth. In this study three turbulent models [k−ε,
RNG (Renormalization Group) theory, LES (Large Eddy
Simulation)] are tested for solitary wave propagation and the
models accuracies are compared. The model results are gen-
erally similar to each other, except thatk−ε results were
slightly under estimated. LES model and RNG model re-
sults were largely similar, but the RNG computational cost
was about 30% of the LES computation. This conclusion
was consistent with the previous report, i.e., RNG model is
known to describe more accurately low intensity turbulent
flows. Therefore we choose the RNG model for the turbulent
model, and other turbulent models are not considered in this
study.

The computational domain (numerical tank) used in this
study is described above. In total it contains 1 069 200 cells,
55 cells in the vertical direction, 72 cells in the longitudinal
direction, and 270 cells in the transverse direction. The grid
size in the vertical direction is 0.01 m and 0.20 m in the lon-
gitudinal direction. The grid size in the transverse direction
is not constant with the minimum size being 0.015 m.

The initial solitary wave height of 0.035 m (ratio ampli-
tude/depth is 0.1, so the wave nonlinearity is weak) enters
at the incident wave boundary and it propagates along the
channel. The procedure of the solitary wave generation by

1995) for solitary wave propagation over constant depth. In this study three turbulent models 

[k-ε, RNG (Renormalization Group) theory, LES (Large Eddy Simulation)] are tested for 

solitary wave propagation and the models accuracies are compared. The model results are 
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about 30% of the LES computation. This conclusion was consistent with the previous report, 

i.e., RNG model is known to describe more accurately low intensity turbulent flows. 

Therefore we choose the RNG model for the turbulent model, and other turbulent models are 

not considered in this study. 

 

 

Fig. 4. Basin geometry for 3D computing of solitary wave runup 
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with the minimum size being 0.015 m. 
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nonlinearity is weak) enters at the incident wave boundary and it propagates along the channel. 

The procedure of the solitary wave generation by a piston wave maker is given by Katell and 

Eric (2002) and the application of wave maker theory to the FLOW3D model simulation was 

tested and verified in the previous study (Choi et al., 2007). The shape of solitary wave is the 

solution of the Korteweg–de Vries equation (28). 

Snapshots of the wave transformation and runup on the beach are illustrated in Figure 5 for a 
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Fig. 4. Basin geometry for 3-D computing of solitary wave runup.

a piston wave maker is given by Katell and Eric (2002) and
the application of wave maker theory to the FLOW-3D model
simulation was tested and verified in the previous study (Choi
et al., 2007). The shape of solitary wave is the solution of the
Korteweg-de Vries Eq. (28).

Snapshots of the wave transformation and runup on the
beach are illustrated in Fig. 5 for a beach slope of 30◦. It
is clearly seen that the wave height distribution along the
front is almost cross-sectionally uniform when the wave is
climbing up on the beach, and this is consistent with the 1-
D analytical theory developed in Sect. 2. It is seen that the
wave runup at the central section (inner most part) is slightly
smaller than the maximum wave height up tot=7.5 s (Fig. 5a
and b). Att=8.7 s, the runup height of 0.45 m at the inner-
most point in the channel is calculated (Fig. 5d) and it is
115% of the runup height at the beach (0.39 m). In Fig. 5f,
it is seen that the runup height at the inner-most point is
slightly smaller than the reflected wave height att=9.5 s, af-
ter it reaches its maximum height att=8.7 s, In the reflected
wave the diverged cylindrical field (diffracted field) on the
“knife” edges is formed.

An enlargement of the “non-plane” structure of the runup
front is shown in Fig. 6. Such effects can not be described
in the framework of 1-D theory where the smoothness of the
coastal line and bottom topography is assumed and in this
case numerical study is more effective for the understanding
of the physical process of wave runup at the parabolic cross-
slope shaped channel. Figure 6 clearly shows the geometrical
effect on the wave runup intensification, i.e., the concaved
channel plays a major role in wave energy focusing so that
maximum wave height occurs at the inner-most point. As
previously described, maximum runup height at the inner-
most point is 15% larger than that of slope when nonlinearity
is 0.1. This justifies the theoretical estimation.

Qualitatively, the general feature of wave runup for the
wall slopes of 45◦ and 60◦ is almost the same as the case
of wall slope of 30◦, and corresponding figures are not dis-
played. Quantitatively, however, the bottom slope influences
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beach slope of 30º. It is clearly seen that the wave height distribution along the front is almost 

cross-sectionally uniform when the wave is climbing up on the beach, and this is consistent 

with the 1D analytical theory developed in section 2. It is seen that the wave runup at the 

central section (inner most part) is slightly smaller than the maximum wave height up to t=7.5 

sec (Fig. 5a and Fig. 5b). At t=8.7 sec, the runup height of 0.45 m at the inner-most point in 

the channel is calculated (Fig. 4d) and it is 115% of the runup height at the beach (0.39 m). In 

Fig. 5f, it is seen that the runup height at the inner-most point is slightly smaller than the 

reflected wave height at t=9.5 sec, after it reaches its maximum height at t=8.7 sec, In the 

reflected wave the diverged cylindrical field (diffracted field) on the “knife” edges is formed. 

  
      (a) t = 7.0 sec     (b) t = 7.5 sec  

  
      (c) t = 8.0 sec    (d) t = 8.7 sec  
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      (e) t = 9.0 sec    (f) t = 9.5sec  

Fig. 5. Contours of the sea level displacement near a concaved slope wall (slope: 30°)  
 
An enlargement of the “non-plane” structure of the runup front is shown in Figure 6. Such 

effects can not be described in the framework of 1D theory where the smoothness of the 

coastal line and bottom topography is assumed and in this case numerical study is more 

effective for the understanding of the physical process of wave runup at the parabolic cross-

slope shaped channel. Fig. 6 clearly shows the geometrical effect on the wave runup 

intensification, i.e., the concaved channel plays a major role in wave energy focusing so that 

maximum wave height occurs at the inner-most point. As previously described, maximum 

runup height at the inner-most point is 15% larger than that of slope when nonlinearity is 0.1. 

This justifies the theoretical estimation. 

Qualitatively, the general feature of wave runup for the wall slopes of 45º and 60º is almost 

the same as the case of wall slope of 30º, and corresponding figures are not displayed. 

Quantitatively, however, the bottom slope influences the wave height; see Figure 7. As 

expected, the smaller the slope, the bigger the maximum particular, the maximum runup 

height is equal to 0.1055 m, 0.097 m and 0.0923 m for slopes runup height is. In 300, 450 and 

600 respectively. However, according to the Synolakis’s formula (30) for the plane beach the 

runup height is 0.077 m, 0.063 m and 0.054 m for the same slopes. The exceedance of the 

computed values above theoretical ones illustrates the importance of the “non-plane” 

geometry on the runup characteristics and the strong influence of local features of the coastal 

topography (up to 30% in height).  

 

 14 

Fig. 5. Contours of the sea level displacement near a concaved slope wall (slope: 30◦).
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Fig. 6. Contours of the sea level displacement near concaved slope wall at 8.7 sec (slope: 30°)  
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Fig. 7. Maximum wave height versus time  

Figure 8 displays the spatial distribution of the velocity field from 7.5 sec, when the solitary 
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Fig. 6. Contours of the sea level displacement near concaved slope
wall at 8.7 s (slope: 30◦).

the wave height; see Fig. 7. As expected, the smaller the
slope, the bigger the maximum particular, the maximum
runup height is equal to 0.1055 m, 0.097 m and 0.0923 m
for slopes runup height is. In 30◦, 45◦ and 60◦ respec-
tively. However, according to the Synolakis’s formula (30)
for the plane beach the runup height is 0.077 m, 0.063 m and
0.054 m for the same slopes. The exceedance of the com-
puted values above theoretical ones illustrates the importance
of the “non-plane” geometry on the runup characteristics and
the strong influence of local features of the coastal topogra-
phy (up to 30% in height).

Figure 8 displays the spatial distribution of the velocity
field from 7.5 s, when the solitary wave approaches the front
of island, to 9.5 s, when the wave reflects from the beach. As
it is clearly seen, the velocity distribution along the vertical
coordinate is not uniform, and the velocity field is weaker
in the bottom layer and higher near the sea surface. We
mentioned this difference in (Choi et al., 2007), discussing
the results of computing the wave runup on a conical island
in the framework of the same model. The vertical velocity
component is not weak at the runup stage (Fig. 8b–e), and it
suggests the limitation of the previous model study based on
shallow-water equations, where the vertical velocity compo-
nents are assumed to be zero.

The wave flow is not uniform in the transverse direction
either (Fig. 9). The runup in the concave channel is accom-
panied by the biggest flow velocities. The appearance of
wave energy concentration in the channel during the water
runup stage is very often observed in tsunami field surveys.
In particular, this situation can explain the anomalous runup
height of 30 m during the 1993 Okushiri tsunami (Hokkaido
Tsunami Survey Group, 1993; Titov and Synolakis, 1997).
The numerical solution demonstrates the non-monotonic de-
pendence of the maximal velocity on the bottom slope and
therefore the velocity of the wave runup on the almost ver-
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Fig. 7. Maximum wave height versus time  

Figure 8 displays the spatial distribution of the velocity field from 7.5 sec, when the solitary 
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Fig. 7. Maximum wave height versus time.

tical wall can be higher. The same effect is manifested in
a fully nonlinear non-hydrostatic 2-D case as pointed out
in Cooker et al. (1997), Wood et al. (2000) and Longuet-
Higgins and Drazen (2002).

In Fig. 10, the role of the turbulent dissipation on the bot-
tom boundary layer on the runup stage is demonstrated for
the case of bottom slope of 45◦, by presenting the turbulent
kinetic energy (TKE in m2/s2) and the turbulent kinetic en-
ergy dissipation (DTKE in m2/s3) at the water surface The
non-uniform spatial distribution pattern of turbulent energy
is clearly seen. TKE is concentrated in the region where the
water surface touches the solid bottom boundary.

In fact, the vertical distribution of the turbulent charac-
teristics is not uniform either (Fig. 11) underlying the im-
portance of the 3-D numerical models to describe the wave
runup in basins with real topography. The temporal varia-
tion of the maximum values of these characteristics for a
bottom slope of 45◦ is presented in Fig. 12. Maximal tur-
bulent motion appears at the moment of maximal runup of
the solitary wave on the beach, when its energy increases
by several orders. The same behavior is obtained for other
bottom slopes. The maximum value of turbulent kinetic en-
ergy is 0.1 m2/s2 for slope 30◦, 0.03 m2/s2 for slope 45◦,
and 0.04 m2/s2 for slope 60◦. Non-monotonic variations of
turbulent kinetic energy, in principle, correlate with non-
monotonic behavior of the velocity in the climbing wave.
The behavior of the turbulent kinetic energy dissipation is
also non-monotonic (1.39 m2/s3 for slope 30◦, 1.46 m2/s3 for
slope 45◦, and 0.44 m2/s3 for slope 60◦) but the maximum of
DTKE is reached when TKE is at a minimum.

Zelt (1986) conducted a physical experiment for concave-
type sloping bathymetry with maximum slope about 11.3◦

and minimum slope 5.7◦, with incoming solitary waves, and
the experiment data are compared with model simulations
results (Zelt, 1986; Ozkan-Haller and Kirby 1997). In this
study, we apply the numerical model to the same physical ex-
periment and show the three-dimensional snapshots as well
as the time history of runup at several locations. Figure 13
shows the three-dimensional water surface snapshots when
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wave approaches the front of island, to 9.5 sec, when the wave reflects from the beach. As it is 

clearly seen, the velocity distribution along the vertical coordinate is not uniform, and the 

velocity field is weaker in the bottom layer and higher near the sea surface. We mentioned this 

difference in (Choi et al., 2007), discussing the results of computing the wave runup on a 

conical island in the framework of the same model. The vertical velocity component is not 

weak at the runup stage (Fig. 8b-e), and it suggests the limitation of the previous model study 

based on shallow-water equations, where the vertical velocity components are assumed to be 

zero. 

The wave flow is not uniform in the transverse direction either (Figure 9). The runup in the 

concave channel is accompanied by the biggest flow velocities. The appearance of wave 

energy concentration in the channel during the water runup stage is very often observed in 

tsunami field surveys. In particular, this situation can explain the anomalous runup height of 

30 m during the 1993 Okushiri tsunami (Hokkaido Tsunami Survey Group, 1993; Titov and 

Synolakis, 1997). The numerical solution demonstrates the non-monotonic dependence of the 

maximal velocity on the bottom slope and therefore the velocity of the wave runup on the 

almost vertical wall can be higher. The same effect is manifested in a fully nonlinear non-

hydrostatic 2D case as pointed out in Cooker et al. (1997), Wood et al. (2000) and Longuet-

Higgins and Drazen (2002).  

  
 (a) t = 7.0 sec        (b) t = 7.5 sec 
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(c) t = 8.0 sec        (d) t = 8.7 sec 

  
(e) t = 9.0 sec        (f) t = 9.5 sec 

 
Fig. 8. Velocity distribution in the center of basin and at the periphery near the concave slope 

with slope: 30°:  
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Fig. 8. Velocity distribution in the center of basin and at the periphery near the concave slope with slope: 30◦.
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the runup reaches its maximum and minimum respectively.
As shown in the figure, the shape of the runup at its maximum
and minimum is quite different. At its maximum (Fig. 13a),
the runup is focused at the center of the bathymetry and the
surface slope is steep toward the center as illustrated by the
contour of water surface. On the other hand, at its minimum
(Fig. 13b) the runup is directed onshore and the surface slope
is lower than at the maximum. It can be interpreted that the
wave energy has focused at the center at the run-up stage and
spread to the on/off shore direction at its run-down stage.

Figure 14 shows the normalized runup in the cross-shore
direction as a function of non-dimensional time and space
scales at different locations along the bay. In general, a good
agreement is found between the physical experiment and nu-
merical simulation in terms of water surface variation in time
and space. These results verify the model accuracy and sta-
bility.

4 Conclusions

The runup of solitary waves on a “non-plane” beach is stud-
ied analytically and numerically. In the analytical study the
nonlinear shallow water equations are solved rigorously for
the parabolic cross-slope shaped bay using the generalized
Carrier-Greenspan transformation. It is shown that the wave
runup in basins with decreasing cross-sections leads to in-
crease of the runup height, confirming many field observa-
tions of tsunami waves. More complicated coastal zone ge-
ometry (plane beach containing the concaved semi-cylinder)
is studied numerically using the 3-D Reynolds averaged
Navier-Stokes equations realized in FLOW-3D. The com-
puted values of the runup heights for this geometry exceed
the similar ones for a plane beach demonstrating the impor-
tance of local features of coastal topography in the process
of wave runup. This fact has also been demonstrated for the
one-dimensional case (Pelinovsky, 1996; Kanoglu and Syn-
olakis, 1998), but for two-dimensional case it leads to big
variations in wave amplitude. The flow velocity field is non-
uniform in the vertical and transverse directions. The runup
velocities in the concave area are bigger then on the periph-
ery. The characteristics of the turbulent kinetic energy and
the turbulent kinetic energy dissipation are computed also.
They are also non-uniform in the vertical and transverse di-
rections. The strong turbulent motion appears at the stage of
the maximum wave runup. The values of the velocity, turbu-
lent kinetic energy and turbulent kinetic energy dissipation
are not monotonic functions of the bottom slope. Analyti-
cal and numerical results for beaches of different geometries
show the importance of complicated seafloor bathymetry in
the vicinity of the shoreline on runup characteristics, and
quantitatively agree with tsunami observations in many ar-
eas of the world’s ocean.
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(b) slope: 45° 
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(c) slope: 60° 

Fig. 9. Maximum velocity versus time for various slopes 

In Figure 10, the role of the turbulent dissipation on the bottom boundary layer on the runup 

stage is demonstrated for the case of bottom slope of 45º, by presenting the turbulent kinetic 

energy (TKE in m2/sec2) and the turbulent kinetic energy dissipation (DTKE in m2/sec3) at the 

water surface The non-uniform spatial distribution pattern of turbulent energy is clearly seen. 

TKE is concentrated in the region where the water surface touches the solid bottom boundary. 
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(b) slope: 45° 
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(c) slope: 60° 

Fig. 9. Maximum velocity versus time for various slopes 

In Figure 10, the role of the turbulent dissipation on the bottom boundary layer on the runup 

stage is demonstrated for the case of bottom slope of 45º, by presenting the turbulent kinetic 

energy (TKE in m2/sec2) and the turbulent kinetic energy dissipation (DTKE in m2/sec3) at the 

water surface The non-uniform spatial distribution pattern of turbulent energy is clearly seen. 

TKE is concentrated in the region where the water surface touches the solid bottom boundary. 
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(c)

Fig. 9. Maximum velocity versus time for various slopes
(a) slope: 30◦ (b) slope: 45◦ (c) slope: 60◦.
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(b) t = 8.5 sec        (e) t = 8.5 sec 

 

  
Fig. 10. Spatial distribution of turbulent kinetic energy (left) and turbulent kinetic energy 

dissipation (right) with slope 45º 

 
In fact, the vertical distribution of the turbulent characteristics is not uniform either (Figure 

11) underlying the importance of the 3D numerical models to describe the wave runup in 

basins with real topography. The temporal variation of the maximum values of these 
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maximum value of turbulent kinetic energy is 0.1 m2/s2 for slope 30º, 0.03 m2/s2 for slope 45º, 

and 0.04 m2/s2 for slope 60º. Non-monotonic variations of turbulent kinetic energy, in 

principle, correlate with non-monotonic behavior of the velocity in the climbing wave. The 

behavior of the turbulent kinetic energy dissipation is also non-monotonic (1.39 m2/s3 for 

slope 30º, 1.46 m2/s3 for slope 45º, and 0.44 m2/s3 for slope 60º ) but the maximum of DTKE 
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Fig. 10. Spatial distribution of turbulent kinetic energy (left) and turbulent kinetic energy dissipation (right) with slope 45◦.
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is reached when TKE is at a minimum.     

  
8.0 sec 

  
8.5 sec 

  
9.5 sec 

Fig. 11. Vertical distribution of turbulent kinetic energy (left) and turbulent kinetic energy 

dissipation (right) for slope 45º. 
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Fig. 11. Vertical distribution of turbulent kinetic energy (left) and turbulent kinetic energy dissipation (right) for slope 45◦.
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Fig. 12. Maximal values of turbulent kinetic energy (TKE) and turbulent kinetic energy 

dissipation (DTKE) versus time for slope 450  

 

Zelt (1986) conducted a physical experiment for concave-type sloping bathymetry with 

maximum slope about 11.3° and minimum slope 5.7°, with incoming solitary waves, and the 

experiment data are compared with model simulations results (Zelt, 1986; Ozkan-Haller and 

Kirby 1997). In this study, we apply the numerical model to the same physical experiment 

and show the three-dimensional snapshots as well as the time history of runup at several 

locations. Figure 13 shows the three-dimensional water surface snapshots when the runup 

reaches its maximum and minimum respectively. As shown in the figure, the shape of the 

runup at its maximum and minimum is quite different. At its maximum (Fig. 13a), the runup 

is focused at the center of the bathymetry and the surface slope is steep toward the center as 

illustrated by the contour of water surface. On the other hand, at its minimum (Fig. 13b) the 

runup is directed onshore and the surface slope is lower than at the maximum. It can be 
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Fig. 12. Maximal values of turbulent kinetic energy (TKE) and turbulent kinetic energy 

dissipation (DTKE) versus time for slope 450  

 

Zelt (1986) conducted a physical experiment for concave-type sloping bathymetry with 

maximum slope about 11.3° and minimum slope 5.7°, with incoming solitary waves, and the 

experiment data are compared with model simulations results (Zelt, 1986; Ozkan-Haller and 

Kirby 1997). In this study, we apply the numerical model to the same physical experiment 

and show the three-dimensional snapshots as well as the time history of runup at several 

locations. Figure 13 shows the three-dimensional water surface snapshots when the runup 

reaches its maximum and minimum respectively. As shown in the figure, the shape of the 

runup at its maximum and minimum is quite different. At its maximum (Fig. 13a), the runup 

is focused at the center of the bathymetry and the surface slope is steep toward the center as 

illustrated by the contour of water surface. On the other hand, at its minimum (Fig. 13b) the 

runup is directed onshore and the surface slope is lower than at the maximum. It can be 
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(b)

Fig. 12. Maximal values of turbulent kinetic energy(a) and turbulent kinetic energy dissipation(b) versus time for slope 45◦.

interpreted that the wave energy has focused at the center at the run-up stage and spread to the 

on/off shore direction at its run-down stage. 

 

  
(a)      (b) 

Fig. 13. Snapshots of the free surface distribution at its maximum (a) and minimum (b) at the 

central point 

 

Fig. 14 shows the normalized runup in the cross-shore direction as a function of non-

dimensional time and space scales at different locations along the bay. In general, a good 

agreement is found between the physical experiment and numerical simulation in terms of 

water surface variation in time and space. These results verify the model accuracy and 

stability. 

4. Conclusion 

The runup of solitary waves on a “non-plane” beach is studied analytically and numerically. 

In the analytical study the nonlinear shallow water equations are solved rigorously for the 

parabolic cross-slope shaped bay using the generalized Carrier – Greenspan transformation. It 

is shown that the wave runup in basins with decreasing cross-sections leads to increase of the 

runup height, confirming many field observations of tsunami waves. More complicated 

coastal zone geometry (plane beach containing the concaved semi-cylinder) is studied 

numerically using the 3D Reynolds averaged Navier - Stokes equations realized in FLOW3D. 

The computed values of the runup heights for this geometry exceed the similar ones for a 

plane beach demonstrating the importance of local features of coastal topography in the 

process of wave runup. This fact has also been demonstrated for the one-dimensional case 

(see, Pelinovsky, 1996; Kanoglu and Synolakis, 1998), but for two-dimensional case it leads 
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Fig. 13. Snapshots of the free surface distribution at its maximum(a) and minimum(b) at the central point.
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to big variations in wave amplitude. The flow velocity field is non-uniform in the vertical and 

transverse directions. The runup velocities in the concave area are bigger then on the 

periphery. The characteristics of the turbulent kinetic energy and the turbulent kinetic energy 

dissipation are computed also. They are also non-uniform in the vertical and transverse 

directions. The strong turbulent motion appears at the stage of the maximum wave runup. The 

values of the velocity, turbulent kinetic energy and turbulent kinetic energy dissipation are not 

monotonic functions of the bottom slope. Analytical and numerical results for beaches of 

different geometries show the importance of complicated seafloor bathymetry in the vicinity 

of the shoreline on runup characteristics, and quantitatively agree with tsunami observations 

in many areas of the world’s ocean.   
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Fig. 14a. Temporal comparison of the model results and Zelt’s experimental data for normalized runup height in the cross shore direction
(incident wave height to offshore water depth ratioH/h0=0.02,h0: offshore water depth,H : incident wave height = 0.02 m,η: run-up
height,L : half-width of the bay,t ’= t

√
gh0/L).

   

  (b) 

Fig. 14. . (a) Temporal comparison of the model results and Zelt’s experimental data for 
normalized runup height in the cross shore direction (incident wave height to offshore water 
depth ratio H/h0 = 0.02, h0: offshore water depth, H: incident wave height = 0.02 m, η : run-up 
height, L : half-width of the bay, t´ = Lght /0 ), (b) The bathymetry of the runup test with 
axis and orientation. 
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