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ABSTRACT 

The potential development of density currents in the Chicago River has been 

analyzed with the help of a three-dimensional hydrodynamic model.  It was found that 

during the winter months, density currents can develop at the junction of the Chicago 

River with its North and South Branches.  Such density underflows show a clear 

tendency to flow from the junction towards Lake Michigan.  Through this subtle 

phenomenon, density currents are able to transport water of lesser quality along the 

bottom towards Lake Michigan.  This phenomenon clearly explains the observations of

bi-directional flow conditions made by the U.S. Geological Survey at Columbus Drive 

and other cross sections in the Chicago River.  While this study shows that density

current activity in the Chicago River is very likely, the frequency, duration, and flow 

discharges associated with this phenomenon have yet to be determined.

Recommendations are made for more computational efforts like the current one as well 

as for more detailed field measurements of a number of flow and water quality 

parameters.  A better understanding of the hydrodynamic behavior of the Chicago River

over a wide range of conditions, will facilitate the management of the river system as 

well as the operation of the flow diversion gates and the recently constructed pumping 

station by Lake Michigan. 
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INTRODUCTION 

Water quality in urban rivers is an issue of increasing importance at the 

beginning of the new millennium.  Problems such as pollution due to solid urban wastes,

discharges of heated water from cooling systems and contamination generated by

industrial liquid effluents are quite often reported in the media and discussed in the 

specialized literature.  Despite the existing need for more research about special 

aspects in environmental hydraulics of urban areas, the hydraulic engineer can currently 

model and measure flow discharge in urban rivers with accurate techniques. 

At the same time, several previously “unforeseen” problems have appeared 

during the last few years, which have an important impact on the management and 

operation of river systems.  The Chicago River (CR) has recently experienced some 

interesting phenomena.  Very recent measurements performed by the Illinois District of

the United States Geological Survey (USGS) have revealed a bi-directional flow in the 

river during wintertime, a phenomenon not commonly reported in the leading literature 

of hydraulic engineering and water quality assessment. 

Motivated by this finding, the Metropolitan Water Reclamation District of Greater

Chicago (MWRDGC), which manages the water flow and quality of the river, contacted 

researchers at the Ven Te Chow Hydrosystems Laboratory (VTCHL) at the University of

Illinois at Urbana-Champaign to elucidate the causes and science of this phenomenon.

Motivated by this request, the staff of the VTCHL submitted an explanation for the 

existence of bi-directional flow through the potential occurrence of density currents in

the CR.  Density currents are well known to be capable of transporting contaminants,

dissolved substances, and suspended particles for very long distances.  If this is the 

case in the CR, there could be a potential water-quality problem due to the potential for

adverse impact on Lake Michigan.  Further, the CR is designated to be a higher use 

classification by the Illinois Pollution Control Board than the North and South Branches 

and density currents from these adjoining water bodies could adversely impact the 

water quality of the CR. 
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The VTCHL was later asked to conduct a series of numerical experiments in 

order to assess the potential presence of density currents in the CR and to recommend 

the best locations and most appropriate techniques for performing additional 

measurements of the phenomenon. 

This report is aimed at describing the accomplishments that have been made to 

date.  The first Chapter deals with the description of the problem; Chapter 2 analyzes

the observations made by the USGS and the MWRDGC.  The third Chapter describes

the theoretical model proposed for the development of density currents and Chapter 4 

presents the numerical model and the computations undertaken, together with the 

analysis of the results.  Finally, in Chapter 5, the conclusions of this study and the 

recommendations made for future work are presented. 
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CHAPTER 1 
PROBLEM DESCRIPTION 

OBJECTIVE AND OUTLINE OF THE ANALYSIS 

1.1 PROBLEM DESCRIPTION 

By the end of the XVIII and the beginning of the XIX centuries, the CR used to 

flow into Lake Michigan.  The littoral transport of sand at the shoreline used to block the 

river outfall into Lake Michigan at that time, only to be re-opened by flooding events in 

the CR.  An interesting compilation of the historical evolution of the river mouth can be 

found in Chrzastowski (1998). 

During the latter part of the XIX century, a continuing public health problem

existed because untreated wastewater from Chicago was carried by the CR into Lake 

Michigan, the source of Chicago’s public water supply.  This problem, which caused the

death of thousands of inhabitants, motivated the artificial modification of the direction of

flow in the river, which, since 1900, goes from the lake towards the West (Figure 1.1). 

This change, accomplished through the construction of a 28-mile canal and 12 miles of

river improvements during the 1890s, and the installation of gates and a diversion

system at the shoreline during the 1930s, constitutes one of the major river engineering 

achievements of the last century (see Lanyon, 2000). 

The flow from the lake to the CR is not continuous.  During the summer months 

(more precisely, from June through October), water is diverted from the lake to the river 

by the MWRDGC, in order to preserve its water quality.  Two other different sources 

contribute to the flow in the CR, as follows: 

a) The inflow resulting from locking (passage of boats and ships from the lake to the 

CR and viceversa), mainly during summertime and 
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b) the uncontrolled leakage through aging gates and walls. 

The amount of leakage and locking inflow depends on the water level difference 

between Lake Michigan and the CR.  The United States Army Corps of Engineers

(USACE) initiated a set of reparation activities on the lock gates in late 1997 that lasted 

till early 1999.  The Illinois Department of Natural Resources (IDNR) constructed new 

walls in 1999 and 2000.  Therefore, the amount of water entering the river through 

leakage is supposed to be minimum nowadays. 

Figure 1.1: Map of the zone of interest in downtown Chicago 

N 
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The waters of the CR merge with the flow coming from the North Branch of the 

Chicago River (NBCR), forming the South Branch of the Chicago River (SBCR); see

Figure 1.1.  The NBCR carries treated municipal sewage effluent released by a plant 

located several miles upstream of the confluence of the branches; the discharge of the 

effluent is about 280 MGD, which is equivalent to 12.3 m3/s. 

The system of channels locally receives waters from direct precipitation and 

discharges from neighboring areas.  Particularly, some of the buildings located in the 

riverbanks (Figure 1.2) use water for cooling purposes and, in doing so, can potentially 

have an effect on water quality. 

Figure 1.2: Aerial view of the mouth of the CR from Lake Michigan 
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In November 1999, the IDNR Department of Water Resources, based on an

aerial photograph, reported a noticeable difference in the color of the water between

Lake Michigan and the CR, which was later confirmed by the MWRDGC.  Since 

common sense suggests that darker water could be of poorer quality, the MWRDGC 

decided to collect samples in the CR for water-quality analysis.  Measurements taken by 

the USGS a year earlier as well as new ones were gathered to analyze the possible 

causes of the phenomenon.  The observations obtained by the USGS revealed the 

presence of a bi-directional flow.  Velocities were observed going towards the lake 

along the bottom and towards the junction along the upper layer of the water column. 

These observations have motivated the research presented herein. 

1.2 DENSITY CURRENTS 

Density currents are flows driven by density differences.  In the field, they may be 

initiated by diverse mechanisms, such as the direct inflow of turbid river water, 

subaqueous slumps induced by seismic or other disturbances, artificial discharge of

mining tailings, temperature gradients or dredging operations (García, 1994).  It is

possible to distinguish between two types of turbidity currents: discontinuous or surge-

like currents and the continuous or plume-like currents.  Discontinuous currents are 

usually generated by instantaneous sources of suspended sediment and they are 

consequently events of limited duration.  For example, earthquakes and dredging 

operations can trigger discontinuous turbidity currents.  Continuous currents, on the 

other hand, can last for hours and even for days (García, 1992; García, 1994). 

Figure 1.3 shows a density current observed in the laboratory (García, 1990), in 

which the visualization has been enhanced by the addition of fluorescein.  It is possible 

to notice the typical shape of the front where a substantial amount of mixing takes

place. 
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Figure 1.3: Density current obtained in the laboratory (García, 1990) 

1.3  OBJECTIVES OF THIS WORK 

The objectives of the computational effort reported herein are as follows: 

a) to assess the potential development of density currents in the CR and the 

conditions when such phenomenon could take place, and 

b) to recommend the best locations and most appropriate techniques for 

conducting observations of the phenomenon. 

1.4 OUTLINE OF THE ANALYSIS 

The analysis carried out at this stage of the project comprises the following steps, 

which are described in the foregoing chapters: 

1) Understanding of the problem, including the analysis of previous measurements; 
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2) formulation of a theoretical model; 

3) numerical solution of the theoretical model; 

a. analysis of the problem in an idealized domain; 

b. analysis of the problem within the real bathymetry. 

The approach proposed for the solution of the problem is based on the concept

of enhancing the understanding of the phenomenon through field observations.  Only

from a sound understanding of the phenomenon, a satisfactory theoretical model can be 

built and correct questions can be posed.  At the same time, it is clear that a thorough 

understanding of the physics involved in the phenomenon would be very valuable in 

helping with the operation of the system. 

It is also important to point out that more measurements are still needed to

validate the theoretical and numerical models presented herein.  Several aspects of the 

phenomenon still need to be clarified and more observations, some of them being 

currently undertaken, will most likely shed light on the frequency of occurrence of this 

kind of density-driven underflow.
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CHAPTER 2 
ANALYSIS OF THE OBSERVATIONS OBTAINED BY THE USGS AND MWRDGC 

The information analyzed in this chapter is based on observations made by the 

USGS (personal communication) and a report generated by the MWRDGC (Polls et al., 

2000).  It refers to measurements of flow velocity, water temperature, specific

conductance, dissolved oxygen (DO), suspended solids, turbidity, ammonia, nitrates, 

nitrogen and total phosphorus. 

2.1 MEASUREMENTS OF FLOW VELOCITY 

The USGS has placed a permanent Acoustic Velocity Meter (AVM) at the bridge 

crossing over the CR on Columbus Drive.  This device converts backscattered acoustic 

pulses into electrical signals that are recorded digitally.  Figure 2.1 presents a 

schematization of the features of the installation of the AVM at Columbus Drive,

provided by the USGS. 

The AVM was able to detect a bi-directional flow on January 11, 1998 (see 

Figure 2.2b), but a unidirectional profile on January 6, 1998 (see Figure 2.2a).  The 

positive sign in those plots indicates flow from East to West.  Thus, in Figure 2.2b, the 

lower part of the velocities points to Lake Michigan (negative values).  The small plots 

on top of each figure depict the turbulent signal for the streamwise component of 

velocity in the CR, as recorded by the AVM; a vertical line indicates the instant at which 

the vertical velocity profile was measured.  It is possible to see that in Figure 2.2a, the 

existing conditions were those of an important flow discharge in the CR towards the 

junction between the NBCR and the SBCR.  On the other hand, in Figure 2.2b, the flow 

velocities were quite small.  This result would suggest that bi-directional flows are 

concomitant with close-to-null flow discharge in the CR. 
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Figure 2.1: Schematic of the AVM installation 

a       b
Figure 2.2: Velocity measurements at Columbus Drive 
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Both Figures 2.2 give an idea of the intensity of the velocities involved: whereas 

the flow velocity on January 6 reached values as large as 0.2 m/s (20 cm/s=0.66 ft/s), 

the maximum streamwise velocities during January 11 were + 0.06 m/s (0.197 ft/s) and 

–0.07 m/s (-0.23 ft/s).  Additionally, it is possible to note that the vertical point with zero 

velocity (i.e. where the flow changes direction) is located at about 0.33 of the flow depth,

that is 2.3 m (7.6 ft) from the bottom. 

Figure 2.3 presents a two-dimensional view of the velocity measurements at the 

Columbus Drive cross section on February 19, 1998.  The velocities are plotted with the 

aforementioned sign convention.  The velocity vectors in fact point perpendicularly to

the paper.  It is possible to clearly notice the bi-directional flow, i.e., the same flow 

pattern observed one and a half months earlier during 1998.  It is also noteworthy that 

the distribution of velocities within the vertical is similar throughout the whole cross

section; that is, the vertical profile showed in Figure 2.2b repeats itself across the whole

width.  Again, the maximum positive and negative velocities are comparable in 

magnitude and similar to those shown in Figures 2.2: 0.2 ft/s.  Also, the location of the 

height of zero velocity is at about 45 % of the flow depth above the bottom. 

Figure 2.3: Velocity measurements at Columbus Drive (02/19/98)  
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Figure 2.4a shows more vertical profiles of streamwise velocity, taken in March, 

1998, one month later than the measurements presented above, at different cross

sections along the CR: McClurg Court, Wabash Avenue, La Salle Street and, again,

Columbus Drive.  These measurements were obtained with an Acoustic Doppler

Velocimeter (ADV) with the exception of Columbus Drive, in which and ADCP was

used.  It is seen that the flow pattern is the same, with velocities pointing to Lake 

Michigan right above the bottom.  Most of the profiles show maximum velocities of

about -0.10 ft/s and +0.15 ft/s, in concomitance with the above results.  The positions of

the height of zero velocity oscillate in the figures, as follows: 0.74 of the flow depth in 

McClurg Court, 0.58 in Wabash Avenue, 0.55 in La Salle Street and 0.5 in Columbus

Drive.  Figure 2.4b is a comparison of the vertical velocity profiles across the cross 

section; it is noticed that the profiles are relatively similar, which agrees well with Figure 

2.3. 

Figure 2.4a: Velocity measurements at three different cross sections (03/18/98) 
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Figure 2.4b: Velocity measurements at Columbus Drive (03/18/98) 

Interestingly, these bi-directional flows were not detected by USGS 

measurements during summertime, when the flow towards the junction is relatively 

intense (one should recall the contribution from locking activities as it was mentioned in 

Chapter 1).  Therefore, the simultaneous presence of low flows in the CR and bi-

directional vertical profiles is once again observed, reinforcing the idea that bi-

directional flows occur mainly when there is no mean flow discharge in the CR. 

These types of flow velocity distributions could be attributed “a priori” to wind-

induced flows or to density currents.  This issue will be analyzed later. 

2.2 MEASUREMENTS OF WATER TEMPERATURE AND CONDUCTIVITY 

The USGS conducted observations of water temperature and electrical 

conductivity in various cross sections of the CR in March 18 and 19, 1998 and of 

temperature only on February 24, 1998.  Figures 2.5a-g present the distributions of 

temperature in several locations (Lake Shore Drive, Columbus Drive, Michigan Avenue, 
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Wabash Avenue, State Street and Franklin/Orleans Street), while Figures 2.6a to f 

depict the distributions of specific conductance in those locations; Tables 2.1a-g detail 

the measured values, expressed in degrees centigrade for temperature and in

microsiemens per centimeter (μS/cm) for conductance.  This last variable is a surrogate

for the content of total dissolved solids (TDS) and is a measure of the ability of a 

solution to transmit an electrical current.  It depends on the total concentration of ionized 

substances dissolved in water and the values are expressed at 20 or 25 °C.  For the 

measurement of these variables, multi-parameter, water-quality-monitoring instruments, 

manufactured by Hydrolab Corporation, Austin, Texas, were employed, with an 

accuracy of +/- 0.15 °C for temperature and +/- 1 % in range for conductivity (range: 0 to 

100 μS/cm). 
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Figure 2.5a: Temperature distribution at Lake Shore Drive (03/19/98) 
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Figure 2.5b: Temperature distribution at Columbus Drive (03/19/98)
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Figure 2.5c: Temperature distribution at Michigan Avenue (03/19/98)
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Figure 2.5d: Temperature distribution at Wabash Avenue (03/19/98)
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Figure 2.5e: Temperature distribution at State Street (03/19/98)

Distance from the bank (m) 

Width [m]Distance from the bank (m)

0.00

5.00 D
ep

th
 [m

]

2.80

3.00

3.20

3.40

3.60

3.80

4.00

 16



10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Figure 2.5f: Temperature distribution at Franklin/Orleans Street (03/19/98)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

Figure 2.5g: Temperature distribution at Columbus Drive (02/24/98)
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Figure 2.6a: Specific conductance distribution at Lake Shore Drive (03/19/98)
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Figure 2.6b: Specific conductance distribution at Columbus Drive (03/19/98)
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Figure 2.6c: Specific conductance distribution at Michigan Avenue (03/19/98)
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Figure 2.6d: Specific conductance distribution at Wabash Avenue (03/19/98) 
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Figure 2.6e: Specific conductance distribution at State Street (03/19/98)
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Figure 2.6f: Specific conductance distribution at Franklin/Orleans Street (03/19/98) 
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Several linear regressions have been proposed to relate the content of total dissolved 

solids with the conductance, but in all the equations the latter increases with the content

of TDS.  However, there is no universal linear relation between TDS and conductivity

(USGS, 2000).  In general, it is commonly accepted that: 

)/()/( cmSinSCklmginTDS μ=    (2.1) 

where  takes values from 0.5 to 0.75.  From the book by Snoeyink and Jenkins (1987,

page 92), a value of 0.64 can be obtained. 

k

From previous plots, it is possible to note that larger temperatures are located in 

the lower part of the cross sections.  Interestingly, for these observations, the 

temperatures in some cases pertain to stable situations (because all the temperatures 

within the cross sections are smaller than 4° C, the point of maximum water density,

and the bigger temperatures are found along the bottom, see next points), such as in 

Lake Shore Drive, Columbus Drive, Michigan Avenue and Wabash Avenue, but they 

lead to unstable conditions in other cross sections. 

For the conductance, it was assumed that all the values were corrected to the 

standard temperature.  All the distributions show a stable pattern, consisting in larger

values towards the lower part of the cross sections.  Adopting the value of 0.64 for k , it 

is possible to note that concentrations of TDS up to 630 mg/l are present at different 

cross sections.

2.3 MEASUREMENTS CONDUCTED BY THE MWRDGC

The staff of MWRCGC performed a set of water-quality measurements of water 

temperature, dissolved oxygen (DO), suspended solids, turbidity, total ammonia 

nitrogen, nitrate nitrogen and total phosphorus at four stations within the CR (Clark

Street, Michigan Avenue, McClurg Court and Chicago River Lock) and one station in 

each of the branches (Erie Street in the NBCR and Jackson Boulevard in the SBCR). 
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Additionally, four stations have been located in Lake Michigan (Polls et al., 2000).  The 

observations were conducted consecutively during 5 weeks (from November 30 to 

December 21, 1999), one day a week (every Tuesday).  The measurements correspond 

to one vertical per cross section, and only a single value for each cross section is

provided. 

The conclusions of the MWRDGC report were as follows: 

a) the NBCR shows systematic higher temperatures than the CR and the SBCR;

temperatures in the SBCR are also larger than the counterparts in the CR.  The 

temperature differences among the three branches are smaller than 5 °C; Lake 

Michigan presents much lower temperatures than the three branches; 

b) both the NBCR and SBCR present lower concentrations of DO than the CR; in 

the latter water course, the concentration of DO increases from the junction 

towards Lake Michigan; 

c) suspended solids concentrations, turbidity levels and nutrients concentrations are 

higher in the NBCR than in the SBCR and, in the SBCR, they are larger than in 

the CR. 

The details of all the measurements can be found in Polls et al., 2000.  The main 

conclusion of these tests is that the NBCR clearly shows poorer water-quality conditions

than the SBCR and than the CR itself.  This is also concomitant with the existence of a 

treatment plant upstream of the junction, which constitutes the major flow source for the 

NBCR.  Polls et al. suggest that water from the lake had to be flowing into the CR in 

order to generate the above dilution, by virtue of the date of the measurements (the 

discretionary diversion ceases by the beginning of November), but this interpretation 

could be reversed: water with poorer water quality could be entering the CR and this 

influence could decay within it, as indicated by the water-quality measurements.   

The concentrations of suspended solids measured by MWRDGC reached values

of 28 mg/l in the branches and in the CR itself. 

 22



2.4 PROCESSING AND ANALYSIS OF THE USGS MEASUREMENTS 

The information provided by the USGS constitutes the most complete resource of 

data about the hydrodynamics in the CR.  Analyzing the data, it was necessary to 

elucidate some of the features of the observations.  In fact, some of the temperature 

measurements indicate that the water density is smaller in the lower part of the cross 

section (which would lead to unstable flow conditions) whereas the distribution of 

conductivity shows larger densities near the bottom and, thus, a stable pattern.  It is well 

known that water density can be computed as the sum of the value corresponding to a 

certain temperature, plus a correction accounting for the presence of suspended solids

(SS) and a second correction due to dissolved solids (DS), as follows: 

( ) ( ) DSSSTDSSST ρρρρ Δ+Δ+= 0,,    (2.2) 

Several authors have provided different expressions for excess fractional density, in 

terms of the contents of suspended and dissolved solids, respectively.  In some cases,

the temperature has been included in the corrections. 

For the basic density in terms of water temperature, Gill (1982) presented the 

following polynomial: 

++−+= −−− 34232 10001685.110095290.910793952.6842594.999 TTTρ

5946 10536332.610120083.1 TT −− +−     (2.3)

where T  is the temperature given in °C and the density is measured in kg/m3.  Wüest et 

al. (1992) reproduced in turn the following polynomial: 

( )323 05607.04878.8185.6510868.999 TTT +−+= −ρ (2.4) 
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For the correction of dissolved solids, two alternatives can be found.  The first one is to 

express the content of solids in the form of total dissolved solids (TDS); the other is to 

express that content in the form of salinity (S).  In terms of the TDS, Ford and Johnson 

(1983) have proposed: 

( )2864 1099.41087.310221.8 TTCTDSDS
−−− +−=Δ ρ (2.5) 

where  is the concentration of total dissolved solids in g/mTDSC 3 or mg/l.  It can be 

noticed that the influence of the temperature is not so important when the range of 

variation of temperature is quite small.  Figure 2.7 shows the ratio of TDSDS C/ρΔ  as a 

function of temperature.  It is possible to conclude that a change of only 10 % occurs in 

that ratio when the temperature varies from 0 to 40 °C.  If the change is small (say, from 

2 to 6 °C), the variation of the ratio is very small. 

Figure 2.7: Plot of equation 2.5 in terms of temperature 
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If the content of dissolved solids is expressed in terms of salinity, Gill (1982)

presents the following formula: 

( ) ++−+−=Δ −−−− 4937253 103875.5102467.8106438.7100899.4824493.0 TTTTCSLDSρ

( ) 2426435.1 108314.4106546.1100277.11072466.5 SLSL CTTC −−−− +−+−+  (2.6) 

where  is the salinity expressed in kg/ mSLC 3 (very often, salinity is defined as the ratio 

between the weight of salt and the sum of the weights of salt and water). 

Wüest et al. (1992), in turn, simply added a term to Equation 2.4, as follows: 

DSDS Cψρ =Δ     (2.7)

where ψ  is either 0.802 kg/m3/‰ if the salinity is expressed as dissolved salt content in 

per mil or 0.705  10-3 kg/m3/(μS/cm) if the concentration is expressed in terms of the 

electrical conductivity measured at 20° C.    

The correction for suspended solids can be done using the following well-known 

relation (García, 1990): 

( )
SS

s
SS CCR

ρ
ρρ

ρ
ρ −

==
Δ    (2.8) 

where R  denotes the submerged specific gravity and sρ  is the density of the 

suspended solids. 

Data reporting contents of suspended solids are not abundant.  The 

measurements performed by MWRDGC were used to have an idea about the amount in 

 25



density change that could be attributed to them.  Applying Equation 2.8, it is easy to find 

that a concentration of 18 mg/l of suspended solids corresponds to a density change of 

0.011 kg/m3.  Therefore, it can be safely assumed that changes in density due to solids

are produced mainly by the TDS.  This statement is valid only for the set of

measurements currently available. 

Despite the correction for temperature given by 2.5, the influence of temperature 

was judged as almost negligible in that equation.  Figure 2.8 depicts the evolution of the 

density in terms of the water temperature, with and without dissolved solids.  It is 

noteworthy that the increase of density due to the presence of dissolved solids 

overcomes the decrease of density due to temperature.  For example, compare the 

points pertaining to 5 and 10 °C; the existence of solids increases the density by about 

0.5 kg/m3, whereas the decrease due to temperature is below 0.18 kg/m3. 

Figure 2.8: Water density distribution as a function of temperature and content of 

suspended solids 
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It is interesting to have an idea about the behavior of the different equations 

presented above.  Figure 2.9a compares the performance of equations 2.3 and 2.4 in 

the prediction of the density.  It can be seen that both formulas give very similar results 

in the range of interest. 

Figures 2.9b and c in turn compare the performance of equations 2.5, 2.6 and 

2.7 to predict the correction to the water density due to the presence of dissolved solids.

To facilitate the comparison, equation 2.3 was employed for the computation of the 

variation of the density in the absence of dissolved solids, together with equations 2.5 

and 2.6; similarly, equation 2.7 was linked to 2.4 for that purpose.  Figure 2.9b shows 

the case pertaining to a suspended solids content given by 600 μS/cm and Figure 2.9c

does the same for 1100 μS/cm.  The conversion from μS/cm to TDS concentration was

done through equation 2.1, for values of the constant equal to 0.5 and 0.75.  The 

comparison shows that there are some discrepancies among equations 2.5 and 2.6 

(which are very similar), with equation 2.7.  This is a consequence of the different 

substances used by the different authors in the tests; the discrepancies are not so 

important when 0.75 is used for the constant and when the dissolved solids content is 

not too high.  The discrepancies are bigger for larger dissolved solids contents.  

Figure 2.9a: Comparison between equations 2.3 and 2.4
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Figure 2.9a: Comparison between equations 2.3 and 2.4 999.5

Figure 2.9b: Comparison among equations 2.5, 2.6 and 2.7 for a dissolved solids 

content of 600 μS/cm 

Figure 2.9c: Comparison among equations 2.5, 2.6 and 2.7 for a dissolved solids 

content of 1100 μS/cm
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In order to convert the measured values of temperature and conductivity in the 

CR, equations 2.4, 2.7 and 2.8 were used, mainly due to their simplicity.  These 

equations were applied to the observations available.  Figures 2.10a-g show the results 

for different cross sections.  From all the Figures, the same stable stratified pattern is

clearly noticed.  This means that, after this conversion, there is no doubt that stable 

stratification dominates the CR throughout its length, despite the presence of “unstable”

water temperature distributions in the vertical.  The maximum density differences 

oscillate between 0.5 and 1 kg/m3.  These would yield excess fractional densities 

( ρρΔ ) ranging from 0.0005 to 0.001. 

Figure 2.10a: Density distribution at Lake Shore Drive (03/19/98) 
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Figure 2.10b: Density distribution at Columbus Drive (03/19/98) 

Figure 2.10c: Density distribution at Michigan Avenue (03/19/98) 
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Figure 2.10d: Density distribution at Wabash Avenue (03/19/98) 

Figure 2.10e: Density distribution at State Street (03/19/98) 
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Figure 2.10f: Density distribution at Franklin/Orleans Street (03/19/98) 

2.5 CONSIDERATION OF WIND-INDUCED FLOWS 
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be argued that they are the result of wind action.  Figure 2.11 shows laboratory
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Figure 2.11: Vertical velocity profile for a wind-induced flow in a closed basin 

2.6 CONCLUSIONS FROM ANALYSIS OF MEASUREMENTS

The analysis performed allows for the following main conclusions: 

a) bi-directional flows, with a particular direction of the flow (lower velocities pointing 

to Lake Michigan) were observed several times during the winter of 1998 in the 

CR; 

b) these bi-directional flows are concomitant with very small mean flows in the CR;  

c) these flows were observed with the simultaneous occurrence of stable density

stratification within the CR; 

d) the NBCR and SBCR have poorer water quality than the CR and the water
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CHAPTER 3 
THEORETICAL AND MATHEMATICAL MODELS FOR DENSITY CURRENTS IN THE 

CHICAGO RIVER 

3.1 THEORETICAL MODEL 

In the present analysis, only one portion of the NBCR and the SBCR is of

interest.  Towards the North, the analyzed domain comprises up to W. Chicago Ave. 

and, towards the South, up to Jackson Blvd.

Figure 3.1 shows the graphical representation of what it has been discussed in 

Chapter 1 in terms of the inputs to the system, based mainly on the information 

provided by the MWRDGC.  The contributions from the lake are clearly stated, as well

as the input from the North and the output towards South. 

Figure 3.1: Schematization of the water inputs to the system 
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Based on Figure 3.1 and the conclusions drawn from Chapter 2, it is possible to 

obtain probable scenarios for summer and winter conditions in the CR.  Thus, Figure

3.2 presents a potential scenario for summer (June through October), when locking 

activities are abundant and the discretionary diversion supplies water to the system. 

This scenario presents the possibility of denser water incoming from Lake Michigan and 

flowing along the bottom of the CR as a density current towards the junction.  This water 

dilutes the incoming water from the NBCR at the junction and, consequently, the quality 

of the SBCR water is improved.  To conserve mass, a countercurrent overflow would 

originate from the junction towards the lake.  This scenario has not been measured by

the USGS, but it is probable, according to the differences in water temperature and solid 

concentration between the lake and the CR.  The presence, detected by the MWRDGC, 

of larger contents of suspended solids in Lake Michigan rather than in the CR supports 

the possibility of occurrence of such an event. 

Figure 3.2: Potential scenario for summer months 
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Figure 3.3 shows the potential scenario for winter.  In this case, the locking 

activities are minimal and the discretionary diversion has ceased.  Therefore, there is no 

incoming beneficial effect from Lake Michigan.  Under these circumstances, it is likely

that water coming from the NBCR, with more content of solids and with larger 

temperatures (and consequently denser, as seen in Chapter 2), could plunge and move 

along the bottom of the CR as a density current.  Again, to preserve mass, a 

countercurrent flow generates, causing an overflow taking water from the CR towards

the junction.  Unlike the summer case, it is assumed herein that the conditions 

measured by the USGS in 1998 pertain to this scenario, and this gives rise to a 

theoretical model for the study of the phenomenon.  Next step consists in translating the 

model to differential equations and, finally, to certify that the adopted theoretical model 

for the development of density currents can explain the facts. 

Figure 3.3: Potential scenario for winter months 
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It is interesting to note that, in these two ways, density currents are generated by

density differences, but it should also be clear that their impact on water quality would 

be most detrimental during the winter months.  The generation of density currents would 

also explain the marked differences in water color observed by the IDNR. 

3.2 MATHEMATICAL MODEL FOR THE COMPUTATION OF DENSITY CURRENTS 

The vast majority of the existing computational models for the study of density 

currents in water environments is one-dimensional (1-D), layer-averaged in the 

coordinate perpendicular to the direction of motion.  Choi and García (1995) (see also 

Choi (1996)) presented a numerical solution of the 1-D, layer-integrated, theoretical 

model of turbidity currents, through the use of a dissipative-Galerkin (i.e., Petrov-

Galerkin) finite element method.  Recently, Bradford and Katopodes (1999a and 1999b)

used the finite-volume method to solve a similar problem.  The conservation equations 

solved in the above efforts were those for fluid mass, streamwise momentum and 

suspended sediment. 

In two-dimensions, the first numerical efforts can be traced back to a paper by 

Daly and Pratch (1968).  These authors used the marker-and-cell method in the solution 

of the Navier-Stokes equations (using the Boussinesq approximation) and a solute 

transport equation.  Mitchell and Hovermale (1977) investigated the front of 

thunderstorms through numerical techniques, solving equations similar to the ones

referred to above.  Similar interesting studies were presented by Thorpe et al. (1980), 

Crook et al. (1985) and Haase and Smith (1989) (all of them related to atmospheric

density currents) and Straka et al. (1993).  Some authors have presented a 2-D solution 

based in multiple layers (Ben-zhao and Xin-rong, 1996).      

In the present problem, the existing conditions at the CR, with all the 3-D 

geometric details and the features of the flow, suggest that using a 3-D model to 

capture all spatial variability and complexity would be most appropriate. 
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Herein, a viscous flow mathematical model for density currents is proposed, as 

follows: 

a) Conservation of momentum: 
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b) Mass conservation: 
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c) Density: 
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where: 

iu : velocity component in the i-th direction (i goes from 1 to 3) 

ix : spatial coordinate in the i-th direction 

p : pressure 

FV : fractional volume open to flow 

iA : fractional area open to flow 

ρ : local density 

iG : body accelerations (coming from body forces) 

ijτ : viscous stresses 

iws : wall shear stress 
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It is interesting to compute also how the free surface position varies with time.

This can be done through the solution of the following equation: 
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in which the variable  defines the volume of fluid fraction (see Appendix 2). F

The standard Newtonian constitutive relation was used to represent the fluid 

behavior in terms of the viscous stresses, keeping in mind that the concentration of

dissolved, and mainly suspended, solids is too small to affect inertial terms. 

It is important to note that the content of suspended solids in the CR is quite low; 

consequently, settling phenomena are not expected to occur based on the observations 

available.  Therefore, no correction for settling velocities to the above equations is

needed.  At the same time, the equations are intended to explain the phenomenon (i.e., 

density currents), with a relatively fast time scale when compared to the settling velocity

of the suspended solids. 

It is also important to note that viscous flow models explain accurately the 

behavior of density currents in laboratory conditions.  This observation is supported by

the evidence presented in some previous papers, detailed above, and by the 

experience at the VTCHL (García and Bombardelli, unpublished report).  In field 

situations, however, turbulence could “a priori” play a more important role.  Present 

evidence would indicate that viscous flow models are accurate enough to predict also 

field situations. 

No thermodynamic effects were included in these simulations at this stage; in 

future efforts this could be analyzed.  At this stage, the adopted model seems to provide 

a plausible description of the density current phenomenon. 
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CHAPTER 4 
NUMERICAL MODEL FOR DENSITY CURRENTS IN THE CHICAGO RIVER 

4.1 NUMERICAL MODEL.  PREVIOUS TESTS 

Equations (3.1) to (3.4) were solved using FLOW-3D®, developed by Flow 

Science, Inc., Los Alamos, USA (FLOW-3D® User’s Manual, 2000).  Some details of the 

model are presented in Appendix 2.  This code was recently tested at the VTCHL in 

many cases, with turbulent flows in hydraulic structures and streams (see Bombardelli 

and García, 1999; Caisley et al., 1999; Bombardelli et al., 2000; Rodríguez et al., 2000). 

In order to certify that the above theoretical model, numerically integrated by 

FLOW-3D®, accurately predicts the motion of density currents, two tests were done.

One of them relates to the experiments by Lin and Mehta (1997) and the other one is

referred to the experiments done by Alahyari and Longmire (1996).  Lin and Mehta 

studied experimentally the transport and sedimentation in laboratory basins, trying to 

obtain insight to the problem usually observed in marinas.  In turn, Alahyari and

Longmire tested experimentally the behavior of three-dimensional (3-D) density currents

in a basin shaped like a circular sector.  In Appendix 3, the details and results of the 

simulation for the tests of Lin and Mehta are presented, which show a very satisfactory 

description of the phenomenon.  The same level of agreement was also obtained for the 

tests of Alahyari and Longmire, but this comparison is not included in this report. 

4.2 SCENARIO FOR THE COMPUTATIONS 

The scenario for the computations was based on the discussion performed in 

Chapter 2 and pertains to winter conditions; summer conditions could be analyzed as 

well, but this was not pursued at this stage.  This means that the selected scenario 

considers null flow from Lake Michigan into the CR.  Also, in this scenario, the NBCR 
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and the SBCR are supposed to have a uniform density throughout the analyzed reach, 

equal to highρ .  This hypothesis is partially justified by the measurements provided by 

the MWRDGC and explained in Chapter 2.  In turn, the CR is assumed to have a lower

density than the density in the North and South branches ( lowρ ).  Initially, it is supposed

that there is an abrupt change of density at the junction and, at t=0 seconds, the system 

is left to evolve. 

Two analyses were performed: first, an idealized domain was employed, in order 

to gain understanding about the flow and to address the influence of the geometry,

computational mesh characteristics and boundary conditions onto the numerical 

solution; then, the real bathymetry was used. 

4.2.1 Computations for the idealized case 

4.2.1.1 Domain, geometry and mesh characteristics 

The idealized domain comprised a parallelepiped of 2000 m in the x-direction 

and 2100 m in y-direction, which roughly represents the analyzed domain.  In the 

vertical, the domain included 8 m, with water levels at about 7 m from its bottom.  Figure 

4.1 shows a schematic of the idealized domain. 

The geometry was introduced into the numerical model through FLOW-3D® solid

modeler; the bottom of the river was assumed to be horizontal.  The CR was

represented with a width of 70 m, whereas the branches were given a width of 75 m. 

350,000 finite volumes were used for this computation (not all of them participate 

in the computation, provided some of them are blocked) with densification in

concomitance with the riverbeds.  This large volume of computation, together with an 

unsteady flow run, made the computational effort important. 
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4.2.1.2 Initial and boundary conditions

The densities were set as: highρ  = 1007 kg/m3 and lowρ  = 1000 kg/m3; the higher 

density was larger than the values seen in the CR, but the test was considered 

appropriate to identify the response of the system.   

Constant velocities (input for the NBCR; output for the SBCR, going from North 

to South) were set as boundary conditions, with a value of 0.1 m/s.  A difference in 

water levels of 0.1 m between the NBCR and the SBCR was also set.  No inputs from 

buildings or precipitation were considered in these computations. 

           0.1 m/s

1825 m           x 

        SBCR

  1032 m  CR 

        NBCR

   y

Figure 4.1: Schematization of the idealized domain 

In order to ensure the input of denser water to the lower boundary of the NBCR,

a small volume of water with that density has to be present close to the boundary

(FLOW-3D® User’s Manual, 2000).   
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4.2.1.3 Results

First, the numerical runs allowed for the corroboration of the robustness of the 

computations for large domains.  Sensible spatial steps were determined in order to

guarantee both robustness and accuracy.  Second, despite the fact of increasing the 

computational effort, the numerical integration of Equation 3.4 (related to the 

determination of the free-surface evolution in time) proved to be very beneficial for the 

correct description of the phenomenon. 

The numerical solution showed the formation of a density current that propagates 

along the bottom towards Lake Michigan.  Figure 4.2 shows a snapshot from the top of 

the front pertaining to 2100 seconds after the beginning of the computations.  It 

corresponds to a horizontal plane at 35 cm from the bottom.  A “separation” effect can 

be clearly identified; this separation later disappears as the front progresses and the 

flow reattaches to the river bank. 

Figure 4.2: Snapshot of the numerical result for 2100 seconds (density contours in 

kg/m3) 
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4.2.2 Computations with the real bathymetry

4.2.2.1 Digital model for the real bathymetry, domain and computational mesh 

The real bathymetry was incorporated into the model through Stereolitography. 

In order to accomplish this task, a methodology developed at the VTCHL was 

employed, which consists in a set of transformations that starts with the raw data 

coming from the surveys and finishes with the final determination of the STL file. 

The survey data used for the cross sections were obtained from an output of a 

previous model done with HEC-6.  Staff from USACE supplied these data.  Since these 

data were in English units, it was necessary to transform them to the metric system and 

relate them to an absolute datum.  The first step in doing this was to create a reference 

point with 1000 latitude and 100 longitude.  Based on this new reference coordinate 

system, all the other points were located on a longitude-latitude plane.  The elevations 

were transformed to meters above sea level.  The final output of this initial 

transformation is a data set of points with 3 coordinates: longitude, latitude and 

elevation above mean sea level.  All these values were in meters and therefore the 

whole dataset was consistent. 

The following step was to use the new dataset to generate a three-dimensional 

mesh to represent the area of interest (it is interesting to note that this mesh differs from 

the grid used for the computations; it only serves to the purpose of building a solid 

body). 

Based on the results obtained with the idealized domain and following the studies

that suggest that the adaptation length in open-channel flows is of the order of 20-40 

times the flow depth, it was concluded that the influence of the boundaries on the flow at 

the junction is minor if they are located beyond 350 m.  The portion used to generate 

the mesh (again, the mesh related to the geometry) corresponds to the following zones: 

NBCR between Chicago Avenue (river mile 326.41) and the junction (river mile 325.6); 
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SBCR between the junction and Adams Street (river mile 325.01); CR between Lake 

Shore Drive (river mile 326.94) and Franklin Avenue (river mile 325.57).  The method 

used to obtain surfaces from the cross sections was triangulation, so as to end up with a 

set of geodesic triangles.  Once the geodesic model was obtained, a simple 

interpolation was done to transfer the triangles to a rectangular mesh.  Thus, the survey 

was transformed to a “bathymetric model”.  This final rectangular mesh has a big set of 

points.  The resolution used was 1 meter x 1 meter in the XY plane (Tecplot™ was used 

to develop this task).  Figures 4.3 and 4.4 show an isometric view and contour lines of 

the final bathymetry model obtained.  The vertical scale is exaggerated 30 times.  

 

 The final transformation consists in converting the interpolated values to an 

AutoCAD® file.  Once inside AutoCAD®, a solid is generated (i.e., the values pertaining 

to a surface are converted to a solid body).  Later, this body is exported as an STL file.  

This file is input directly to FLOW-3D®. 

 
Figure 4.3: Isometric view of the bathymetry model 
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Figure 4.4: Contour plots of the bathymetry model 

 

Figure 4.5 depicts a plain view of the domain and the employed computational 

mesh, which included 540,000 finite volumes.  This computational mesh was obtained 

trying to follow the more active zones of the domain.  In the Figure, the denser fluid is 

displayed in red and the lighter fluid in blue.   

 

4.2.2.2 Initial and boundary conditions 

 

 A difference in water levels was set between the NBCR and the SBCR 

boundaries; the density entering to the NBCR was the denser one (this has to be 

specified explicitly in the model, as explained previously).  The values of the densities 

were as follows: highρ  = 1002 kg/m3 and lowρ  = 1000 kg/m3, which reflect the conditions 

within the system.  No inputs from buildings or precipitation were considered.  The 
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boundary condition at Lake Michigan was impenetrability or zero flow through.  No-slip 

conditions were set in the solid boundaries.  

4.2.2.3 Results 

Several runs were performed changing different parameters until the optimum

conditions were attained.  In the final run, 5 hours of real time were simulated,

demanding about 150 hs to be completed, which illustrates the computational effort. 

Figures 4.6 to 4.9 show top views, taken at a level close to the bottom of the

river, of the density field.  It can be seen that there is a front that propagates with a 

variable speed towards Lake Michigan.  Transition zones of variable density lie between 

the limiting values.  In turn, Figures 4.10 and 4.11 show lateral views (in vertical planes) 

that provide clear evidence of the propagation of a density current from the junction.

Figure 4.12 shows a typical vertical velocity distribution in the CR.  The order of

magnitude of the computed velocities agrees well with the measured ones. 

Figures 4.13 and 4.14 show the density distribution in Franklin/Orleans Street 

and State Street cross sections.  It takes about 1.7 hs for the front to reach State Street, 

but it takes much longer times to reach Lake Michigan, provided that the velocity of the 

front decreases in time (it is farther from its source).  It is also noticeable that the

thickness of the density current is of about 3 m (9 ft), which represents 43 % of the 

depth and agrees well with the measurements undertaken by the USGS.  Additionally, 

the distribution of density predicted by the model is uniform throughout the cross 

section, as measured in the CR.  Notice that this mechanism explains why the pattern of 

stratification repeats itself in the whole river, as observed by the USGS.  Thus, it seems 

plausible to assume that the theoretical model, numerically integrated, gives a very 

clear cause-effect relation for the phenomenon observed in the CR.    
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Figure 4.5: Final domain and computational mesh 

Figure 4.6: Close-up top view of computed density contours in the CR for 120 seconds 

of real time.  This pertains to the upper part of the domain 
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Figure 4.7: Close-up top view of computed density contours in the CR for 1 hour of real 

time.  This pertains to the upper part of the domain 

Figure 4.8: Close-up top view of computed density contours in the CR for 2 hours of 

real time.  This pertains to the upper part of the domain 
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Figure 4.9: Close-up top view of computed density contours in the CR for 3 hours of 

real time.  This pertains to the lower part of the domain 

Figure 4.10: Close-up side view of computed density contours in the CR for 2600 

seconds of real time 

Lake Michigan Junction
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Figure 4.11: Close-up side view of computed density contours in the CR for 3600 

seconds of real time 

Figure 4.12: Vertical velocity distribution in the CR after 4400 seconds of real time at 

450 m from the junction 

Lake Michigan Junction
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Figure 4.13: View of computed density contours in the CR at the cross section of 

Franklin Street 

Figure 4.14: View of computed density contours in the CR at the cross section of State 

Street 
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CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS AND CONCLUDING REMARKS

The analysis undertaken until now leads to the following conclusions: 

a) Preliminary numerical computations show that a mechanism based on the 

development of density currents in the Chicago River can be used to explain 

qualitative and quantitatively the behavior observed by the USGS in terms of 

vertical density distribution and bi-directional flow velocity profiles.  These results 

suggest the meaningfulness of the theoretical model adopted. 

b) The calculated density current presents a thickness of about 3 m (9 ft), which 

agrees well with the measurements obtained by the USGS. 

c) More detailed field measurements are needed in order to definitely calibrate and 

validate, through the definition of more clear scenarios, the ongoing 

hydrodynamic computational model of the Chicago River and improve future 

model predictions. 

d) More computational efforts are needed to study the evolution of the system 

under diverse conditions, such as wind, flow discharge (diversion) incoming from 

the lake, etc. 

e) A thorough understanding of the river hydrodynamics will facilitate both the 

generation of sound recommendations and the formulation of effective rules for 

the operation of the system, including the pumping station recently constructed

by the IDNR.  
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5.2 RECOMMENDATIONS 

The above analysis leads to the following recommendations for measurements in 

the CR and its branches: 

a) Velocity measurements (AVM and ADCP) + specific conductance + 

temperature + turbidity + concentration of suspended solids + water levels 

1. Possible stations in the Chicago River: 

i. Franklin/Orleans Street 

ii. Clark Street 

iii. State Street 

iv. Michigan Avenue 

v. Columbus Drive 

vi. Lake Shore Drive 

2. Possible stations in the South Branch of the Chicago River: 

i. Lake Street 

ii. Madison Street 

iii. Jackson Blvd 

3. Possible stations in the North Branch of the Chicago River: 

i. Kinzie Street 

ii. Grand Avenue 

iii. Chicago Avenue 

b) Velocity measurements should be capable of resolving flow velocities every 

10-15 cm in the vertical. 

c) Temperature measurements should be taken on an almost continuous basis 

with the help of thermistor chains placed along the whole wetted perimeter of 

the cross sections recommended above. 
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d) Settling rates of suspended solids found in the water column, particularly in 

the North Branch of the Chicago River, should be determined. 

e) A tracer study should be conducted by releasing rhodamine along the bottom 

of the North Branch of the Chicago River before the junction and doing 

measurements with a field fluorometer at different locations in the Chicago 

River. 

f) Improved bathymetric information is needed in order to study the influence of

local 3-D effects. 

g) Field measurements and numerical modeling are also needed to understand 

the hydrodynamics of the system in the proximity of Lake Michigan.  This 

could provide important information for the effective operation of the gates for 

water diversion from Lake Michigan as well as the recently constructed 

station for pumping water back into the lake. 
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APPENDIX 1 
SUMMARY OF DATA COLLECTED BY USGS 
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SUMMARY OF DATA COLLECTED BY USGS 

Table 2.1a: Temperature and specific conductance measurements at Lake Shore Drive 
(03/19/98)

feet m T (C) SC
(u S/cm)

T (C) SC 
(u S/cm)

T (C) SC
(u S/cm)

T (C) SC
(u S/cm)

T (C) SC
(u S/cm)

0 0 3.06 607 2.87 606 2.82 613 2.8 609 2.79 611
2 0.61 3 607 2.84 612 2.8 608 2.78 610 2.78 610
4 1.22 2.98 608 2.81 618 2.78 617 2.75 623 2.8 617
6 1.83 2.99 616 2.85 627 2.79 622 2.74 625 2.77 626
8 2.44 3 616 2.89 673 2.81 656 2.79 659 2.77 650
10 3.05 3 642 2.95 716 2.88 698 2.88 703 2.88 700
12 3.66 3.11 715 3 742 2.96 729 2.94 732 2.95 733
14 4.27 3.13 737 3.04 757 3 753 2.96 743 2.96 740
16 4.88 3.14 746 3.14 808 3.03 770 2.98 754 2.97 752
18 5.49 3.15 755 3.41 318 3.15 828 3 767 2.99 763
20 6.1 3.26 824 3.73 1020 3.67 967 3.09 798 3.04 809
22 6.71 3.45 888 3.88 1080 3.87 1073 3.43 891 3.23 868
24 7.32 3.64 998 3.96 1100 3.96 1118 3.6 963 3.55 965
26 7.92 4.01 1083 3.99 1120 3.79 1063 3.68 1085
28 8.53 3.88 1079 3.91 1122
30 9.14 3.87 1097
32 9.75 3.92 1111

Distance from surface 6.1 12.19 18.29 24.38 30.48
20 40 60 80 100

feet m T (C) SC
(u S/cm)

T (C) SC 
(u S/cm)

T (C) SC
(u S/cm)

T (C) SC
(u S/cm)

T (C) SC
(u S/cm)

0 0 2.79 611 2.8 612 2.81 611 2.82 611 2.82 611
2 0.61 2.79 611 2.8 612 2.8 611 2.81 611 2.82 612
4 1.22 2.78 620 2.8 626 2.8 612 2.8 609 2.8 617
6 1.83 2.75 632 2.78 635 2.8 620 2.8 669 2.85 697
8 2.44 2.78 660 2.82 670 2.8 641 2.9 732 2.94 740
10 3.05 2.87 700 2.91 714 2.88 696 2.95 754 2.96 744
12 3.66 2.94 730 2.96 738 2.96 742 3.04 795 2.97 756
14 4.27 2.96 754 2.97 753 2.97 752 3.24 861 3.05 796
16 4.88 3 762 3.01 782 3.1 801 3.25 861
18 5.49 3.07 811 3.12 880 3.14 850 3.64 976
20 6.1 3.36 894 3.73 1004
22 6.71 3.5 946
24 7.32 3.88 1110
26 7.92
28 8.53
30 9.14
32 9.75

Distance from surface
160 180 220

36.58 42.67 48.77 54.86 67.06
120 140
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Distance from water edge. (feet) (m) 
10 50 90 130 170 190 

Distance from 
surface 

3.05 15.24 27.43 39.62 51.82 57.91 

feet m T 
(C) 

SC 
(uS/cm) 

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm) 

T (C) SC 
(uS/cm)

0 0.00 2.97 659 2.92 660 2.94 660 2.95 654 2.97 660 2.98 665 
2 0.61 2.96 660 2.92 659 2.93 660 2.91 664 2.94 665 2.96 665 
4 1.22 2.96 660 2.92 660 2.92 660 2.87 676 2.87 675 2.96 679 
6 1.83 2.94 659 2.92 660 2.89 693 2.89 698 2.91 706 2.91 681 
8 2.44 2.94 660 2.94 710 2.96 741 2.91 716 2.95 726 2.93 705 

10 3.05 2.96 681 3.00 751 3.15 808 3.12 774 3.30 820 2.94 719 
12 3.66 3.05 747 3.09 794 3.31 848 3.31 835 3.46 853 3.28 803 
14 4.27 3.19 800 3.28 838 3.52 955 3.42 889 3.56 938 3.54 862 
16 4.88 3.22 822 3.45 919 3.90 1068 3.70 1015 3.89 1062 3.52 880 
18 5.49 3.41 885 3.70 1038 4.21 1156 4.00 1084 3.96 1082 
20 6.10 3.55 947 3.77 1090 4.15 1142 
22 6.71 3.70 1045 
24 7.32 4.13 1150 

Table 2.1b: Temperature and specific conductance measurements at Columbus Drive 
(03/19/98) 

Distance from water edge. (feet) (m) 
0 50 90 130 170 200 

Distance 
from 

surface 

0 15.24 27.43 39.62 51.82 60.96 

feet m T (C) SC 
(uS/cm) 

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm) 

T (C) SC 
(uS/cm)

0 0.00 2.99 680 2.96 681 2.99 692 3.02 700 3.09 700 3.22 702 
2 0.61 2.99 680 2.97 679 2.98 680 3.01 706 3.05 705 3.21 703 
4 1.22 3.01 692 2.97 677 2.99 684 3.01 707 3.04 709 3.15 706 
6 1.83 3.05 709 2.97 679 3.01 695 3.02 704 3.04 707 3.13 708 
8 2.44 3.10 735 2.98 685 3.07 717 3.03 713 3.03 713 3.38 711 

10 3.05 3.16 759 3.26 806 3.12 743 3.12 741 3.03 728 3.39 713 
12 3.66 3.23 796 3.32 831 3.37 783 3.48 812 3.18 738 3.46 775 
14 4.27 3.39 865 3.34 838 3.46 810 3.40 863 3.48 861 3.52 886 
16 4.88 3.34 848 3.41 860 3.67 982 3.76 1001 3.57 925 
18 5.49 3.79 981 3.57 943 4.02 1081 
20 6.10 4.01 1050 4.13 1050 4.06 1115 
22 6.71 4.06 1086 4.07 1130 
24 7.32 4.17 1149 

Table 2.1c: Temperature and specific conductance measurements at Michigan Avenue 
(03/19/98) 
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Distance from water edge. (f) (m) 
20 60 100 140 180 210 

Distance 
from 

surface 

6.10 18.29 30.48 42.67 54.86 64.01 

feet m T 
(C) 

SC 
(uS/cm) 

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm

) 

T (C) SC 
(uS/cm)

0 0.00 3.04 707 3.08 704 3.02 708 3.05 715 3.09 718 3.12 723 
2 0.61 3.03 709 3.03 705 3.03 708 3.06 716 3.09 720 3.13 727 
4 1.22 3.11 752 3.09 736 3.06 730 3.09 744 3.09 729 3.15 729 
6 1.83 3.22 790 3.16 785 3.10 755 3.21 777 3.10 743 3.20 761 
8 2.44 3.27 802 3.21 808 3.15 772 3.34 841 3.22 785 3.24 781 

10 3.05 3.34 828 3.24 814 3.29 800 3.61 904 3.50 883 3.41 845 
12 3.66 3.38 840 3.34 832 3.37 832 4.05 1023 3.41 867 
14 4.27 3.39 847 3.62 928 3.41 846 4.04 1020 
16 4.88 3.43 863 4.10 1036 3.57 896 4.12 1060 
18 5.49 3.68 972 4.23 1085 4.08 1006 
20 6.10 4.13 1060 
22 6.71 4.27 1144 

Table 2.1d: Temperature and specific conductance measurements at Wabash Avenue 
(03/19/98) 

Distance from water edge. (f) (m) 
20 60 100 140 180 

Distance from 
surface 

6.10 18.29 30.48 42.67 54.86 

feet m T (C) SC 
(uS/cm)

T (C) C
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm) 

0 0.00 3.81 732 3.95 724 3.07 719 3.06 711 3.19 726 
2 0.61 3.24 731 3.37 724 3.07 723 3.07 712 3.18 727 
4 1.22 3.21 734 3.12 725 3.09 736 3.07 723 3.17 726 
6 1.83 3.19 771 3.11 726 3.09 733 3.10 725 3.15 726 
8 2.44 3.19 780 3.12 747 3.09 736 3.09 726 3.13 727 

10 3.05 3.19 785 3.12 755 3.10 737 3.33 801 3.43 808 
12 3.66 3.14 829 3.17 772 3.28 793 4.48 1050 3.75 896 
14 4.27 3.64 919 3.26 806 4.02 981 4.20 1010 
16 4.88 3.67 940 4.29 1050 4.54 1081 
18 5.49 4.15 1062 4.32 1115 4.58 1051 
20 6.10 4.43 1174 

Table 2.1e: Temperature and specific conductance measurements at State Street 
(03/19/98) 
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Distance from water edge. (feet) (m) 
20 60 100 140 180 

Distance 
from 

surface 

6.10 18.29 30.48 42.67 54.86 

Feet m T (C) SC 
(uS/cm) 

T (C) C
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm)

T (C) SC 
(uS/cm) 

0 0.00 3.51 824 3.57 832 3.64 837 3.70 854 3.88 870 
2 0.61 3.53 831 3.57 832 3.64 841 3.74 852 3.97 879 
4 1.22 3.57 840 3.96 860 3.66 845 4.12 892 4.02 884 
6 1.83 3.67 846 4.21 894 4.20 878 4.29 910 4.58 917 
8 2.44 3.96 879 4.23 913 4.47 915 4.80 942 4.71 944 

10 3.05 4.39 944 4.86 952 4.67 940 4.98 962 4.69 943 
12 3.66 4.88 975 4.96 970 4.84 953 5.16 973 4.62 940 
14 4.27 4.97 984 5.04 974 5.01 965 5.20 984 5.27 975 
16 4.88 5.13 1007 5.15 991 5.19 996 5.20 995 5.44 992 
18 5.49 5.28 1006 5.34 1016 5.24 1011 5.25 1010 

Table 2.1f: Temperature and specific conductance measurements at State Street 
(03/19/98) 

Distance from water edge y (f) and (m) 
0 20 40 60 80 100 120 140 160 184 

Distance 
from surface 

0.00 6.10 12.19 18.29 24.38 30.48 36.58 42.67 48.77 56.08 

feet m T (C) T (C) T (C) T (C) T (C) T (C) T (C) T (C) T (C) T (C) 
0 0.00 5.50 5.50 5.60 5.60 5.60 5.60 5.70 5.80 5.80 5.70 
2 0.61 5.50 5.50 5.60 5.60 5.60 5.60 5.70 5.70 5.80 5.70 
4 1.22 5.40 5.50 5.60 5.60 5.60 5.60 5.60 5.70 5.80 5.70 
6 1.83 5.50 5.50 5.60 5.60 5.60 5.60 5.60 5.70 5.70 5.70 
8 2.44 5.50 5.50 5.60 5.60 5.60 5.60 5.60 5.70 5.50 5.70 

10 3.05 5.50 5.50 5.60 5.60 5.60 5.60 5.60 5.70 5.60 5.60 
12 3.66 5.50 5.50 5.60 5.60 5.60 5.60 5.60 5.70 5.50 5.50 
14 4.27 5.50 5.50 5.60 5.80 5.60 5.60 5.60 5.70 5.50 5.60 
16 4.88 6.60 7.10 5.60 5.80 6.50 7.40 7.10 6.80 6.10 6.50 
18 5.49 6.95 7.30 7.20 7.10 7.40 7.40 7.40 7.40 6.70 6.90 
20 6.10 6.97 7.35 7.40 7.40 7.40 7.40 7.40 7.40 7.30 7.30 
22 6.71 7.40 7.40 7.40 7.30 7.30 

Table 2.1g: Temperature measurements at Columbus Drive (02/24/98) 

 63



APPENDIX 2 

 64



APPENDIX 2 
FLOW-3D® COMPUTATIONAL MODEL 

A2.1 GENERAL CONCEPTS 

 FLOW-3D® is a powerful 3-D numerical code developed by Flow Science, Inc., 

Los Alamos, USA, for Computational Fluid Dynamics (CFD) problems.  Former Los 

Alamos National Laboratory researchers, who proposed several leading techniques in 

CFD at that institution, founded Flow Science, Inc.  Those leading techniques are now 

part of the code. 

The solver allows for the solution of very complex problems, for laminar or 

turbulent, compressible or incompressible flows.  To accomplish that, FLOW-3D® solves 

the fully-3-D transient Navier-Stokes equations by a finite-volume-finite-difference 

method in a fixed (Eulerian) rectangular grid. It includes a variety of processes that are 

interesting to simulate water flows, such as heat conduction, surface tension, cavitation 

and moving obstacles.  For turbulent flows, it supports closure through a number of 

advanced and widely accepted approximations, including: 

a) Prandtl’s mixing length theory; 

b) turbulent energy model; 

c)  two-equation ε−k  model and 

d) ε−k  RNG, based on the Renormalization Group Theory,

solved together with the Reynolds-Averaged Navier-Stokes (RANS) equations.  A 

version of the filtered Navier-Stokes equations is also implemented (Flow Science,

2000). 
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In FLOW-3D®, the processes of meshing and building the obstacles in the model 

are totally independent.  This property avoids the laborious tasks related to the 

construction of body-fitted meshes (to conform to obstacle shapes) or to the creation of 

finite-element grids.  On the opposite point of view, this procedure needs densification 

when the domain is very sinuous.  In turn, the obstacles and the full geometry are 

defined independently from the mesh by a “solid modeler”, which allows for the use of

general quadratic functions, or through Computer Aided Design (CAD).  In order to 

represent the solid boundaries, the FAVOR technique is employed (Hirt and Sicilian,

1985), which incorporates fractions of volumes and areas to account for the parts of the 

finite volume open to flow in the computation of the fluxes.  In this way, some volumes

may be blocked whereas some others are partially or totally open.  Thus, FAVOR 

precludes saw-tooth representations of solid boundaries.

The meshing process produces a smooth variation of the cell size in order to 

maintain numerical accuracy.  A staggered grid for the velocities is utilized.  The 

numerical scheme has an accuracy that is in general first order with respect to time and 

space increments.  The numerical implementation of the numerical scheme is explicit. 

Second order discretization of the advective and viscous terms is also available. 

A2.2 VOF FREE-SURFACE COMPUTATION METHOD

Several methods have been devised in order to treat the free surface.  The free 

surface is not only unknown but also acts as a boundary condition for the problem.

Therefore, this fact adds more complexity to the well-known difficulty of 3-D numerical 

simulations. 

A detailed follow-up of the free surface is complex to code and it gets almost 

impracticable for cases in which volumes of water break apart.  Three problems arise: 

how to compute it, the amount of computation time needed and the minimum number of 
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variables to be stored in the process.  As a consequence, alternative solutions for 

special cases have been proposed. 

The most frequently found technique in hydraulics is the “rigid lid” approximation,

which assumes the free surface as a horizontal plane.  The pressure field calculated by

the model gives in this approximation the displacements of the free surface with respect 

to that plane.  Other methods are based on the use of ad-hoc cells of different size 

located close to the water surface, and some authors have employed a “porosity”

technique.  A variable density that is equal to the water’s value in the aqueous phase 

and zero outside has been also implemented in several codes.     

 FLOW-3D® uses the Volume-of-Fluid (VOF) method (Hirt and Nichols, 1981), 

which is based on defining a function ( , the volume fraction) whose value is one at 

any point occupied by fluid and zero everywhere else.  Between these two extreme 

values, a complete set of values can be found.  In conjunction with a numerical model,

the average value of this function over each grid element is equal to the fractional 

volume of the element occupied by fluid.  At each time step, the following equation for 

the above function is solved: 

F

0=
∂
∂

+
∂
∂

i
i x

Fu
t
F         (A2.1) 

where  is the i-th component of the velocity vector,  indicates the spatial 

coordinates and t  refers to the time coordinate.  The method is based on three key 

elements: the definition of the function , the use of a high-accuracy numerical scheme 

to solve A2.1 avoiding numerical diffusion and the specification of appropriate boundary

conditions at the free surface, consisting in the setting of null tangential stresses.  This

method combines the advantages of minimum memory storage (only one variable, , 

has to be recorded), reasonable computational cost and satisfactory accuracy. 

iu ix

F

F
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A2.3 BOUNDARY CONDITIONS

FLOW-3D® can handle a variety of boundary conditions, as follows: 

a) rigid wall with slip; 

b) rigid wall with no-slip (imposed through a wall shear stress); 

c) specification of fixed velocities or pressures; 

d) symmetry planes; 

e) continuative outflow boundaries; 

f) periodic boundaries.

The boundary conditions for the turbulent kinetic energy and the dissipation rate are the 

usual ones.  For rigid walls, wall functions are used to compute the values for the 

variables in the first control volume close to the boundary; null derivatives of those 

variables normal to the boundaries are set in the case of symmetry planes.  When 

dealing with free surfaces, the physical behavior of the boundary has some properties 

similar to a rigid wall (the fluctuations vanish perpendicularly to the surface) and some

other properties resemble a symmetry plane; therefore, it could be treated either way. 

In FLOW-3D®, the free surface is treated as a symmetry plane. 

These boundary conditions differ from other models’ conditions, in the FAVOR 

technique included in FLOW-3D®. 

A2.4 SIMULATION OF STRATIFIED FLOWS WITH FLOW-3D®

FLOW-3D® allows for the simulation of stratified flows in the following ways: 

a) As a single fluid with variable density; 

b) As a two-fluid flow. 
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In particular, single-fluid variable-density flows can be treated together with a volume

tracking of the free surface or with the drift-model approximation.  The first type of 

model applies to flows in which density varies spatially in an otherwise incompressible 

flow.  The latter refers to a simple two-phase flow in which one component of a mixture 

can move with respect to another; it is a good model if the relative velocity between the

fluids is quite small and it is not suitable for free-surface tracking.  This last

approximation proved to be satisfactory for the simulation of laboratory generated 

density currents (García and Bombardelli, unpublished report). 

In the simulations reported herein, the flow was treated as a single-fluid variable-

density flow. 
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APPENDIX 3 
NUMERICAL SIMULATION OF LIN-MEHTA TESTS 

A3.1 OBJECTIVE OF THE SIMULATIONS.  LIN-MEHTA TESTS 

The objective of this numerical exercise was to analyze the performance of the 

selected theoretical model to simulate density currents. 

P. C.-P. Lin and A. J. Mehta presented in 1997 a study about sedimentation in 

elongated basins.  In estuarine environments, turbidity currents play an important rôle 

transporting suspended sediment to neighboring basins; if the advective transport is

limited, these small basins are prone to sedimentation by this mechanism.  To study this

phenomenon, Lin and Mehta performed measurements in a laboratory basin 14 m long, 

0.1 m wide with a depth of 0.1 m.  The device is as follows: 

   Main channel 

      Gate

        underflow 

Figure A3.1: Schematization of the tests 

Initially, Lin and Mehta generated a sediment-laden (denser) water current in the 

main channel and introduced lighter water in the basin, separating both fluids through a 

gate.  They later released the gate and measured the front position for different times.
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The measurements were performed for diverse density differences and diverse settling 

velocities (different particle sediment size).  They considered that the width of the basin 

does not play a significant rôle in the determination of the features of the density 

current.  Figure A3.2 presents their results in terms of the evolution of the front position 

in time.  In the expression for the normalized time, they employed the densimetric 

velocity or interfacial celerity, as follows: 

Hgu
wρ
ρΔ

=Δ     (A3.1)

Among their very interesting results, Lin and Mehta identified that the behavior of the 

turbidity current, carrying sediment, was similar to that pertaining to a viscous non-

turbulent flow, i.e., that the behavior was mainly viscous.  They have also found that

turbid fronts (with sediment) behave similarly to non-settling gravity fronts. 

The above experiments were implemented in FLOW-3D® to facilitate the 

comparison.  The solid modeler was used to set the geometry.  The conditions

corresponding to Test Nº 1 were taken, for which: ρΔ  = 1.04 kg/m3, (settling velocity) 

= 0.048 10

1sw
-2 m/s and  = 0.032 m/s.  Figure A3.2 presents the comparison between 

the measured and modeled front position vs time.  A satisfactory agreement can be 

noticed between them. 

Δu

Finally, notice that the conditions studied by Lin and Mehta, and modeled with 

FLOW-3D®, resemble those at the CR. 

REFERENCES 
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Figure A3.2: Tests by Lin and Mehta 
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Figure A3.3: Comparison between measured and modeled values for Lin and Mehta’s 
tests 
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