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In this study, we predicted ship wave crest patterns in intermediate-depth water by 

extending Kelvin’s theory with the recursive relation for the dispersion relation in 

intermediate-depth water. Using the FLOW-3D we tested for two cases that the relative 

water depths are kh = 0.86π and 0.42π. The numerical results showed that, as the water 

depth became shallower, both the diverging and transverse wave crests were located 

further behind the ship and the cusp locus angle became larger as 19.60 and 24.81 

degrees, respectively. These were because, in shallower water, the Froude number 

became higher. In other words, as the ship speed increased compared to the gravity-

affected long wave speed, all the wave components were located further behind and 

outside. 

1.   Introduction 

The waves which propagate outward from the ship have two types of crests, i.e., 

diverging and transverse ones and Kelvin (1887) found that, in deep water, the 

two types of crests meet at a farthest point with an angle of 19.47 degree (i.e., 

cusp locus angle) from the ship trajectory. Physical experiments and numerical 

experiments proved Kelvin’s ship wave crests. Coastal engineers need to predict 

the ship wave crests in shallower water because ship waves may affect mooring 

boat or damage seawalls when the ship travels in a narrow channel or with a 

high speed. Ship waves are generated from a moving source (i.e., ship) and these 

cannot be predicted by the depth-integrated wave equations such as the 
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Boussinesq equations and the mild-slope equations. Recently, the code FLOW-

3D which uses the RANS (Reynolds Averaged Navier-Stokes) equation has 

been updated to use the moving boundary condition and thus can predict the 

ship wave propagation.  

In this study, we predicted ship wave crest patterns in intermediate-depth 

water by extending Kelvin’s theory with the recursive relation for the dispersion 

relation in intermediate-depth water. Using the FLOW-3D we tested for two 

cases that the relative water depth is 86.0kh and 42.0  and compared the 

numerical results with analytically obtained wave crest patterns of the present 

method and Kelvin’s method. 

2.   Extension of Kelvin’s approach in intermediate-depth water 

The ship waves can be understood as waves propagating outward from the 

moving source point. The wave crests may be categorized into diverging and 

transverse waves. The diverging waves look like waves propagating more right- 

and left-ward than backwards from the ship and the transverse waves look like 

waves propagating more backward from the ship.  

These waves can be understood as the presently-formed crested waves 

which have arrived at the points starting from different source points at different 

times before. Figure 1 shows how each wave component propagates from the 

source to the crest. All the wave rays perpendicularly meet the crest curves. In 

the figure,   means the angle of the wave ray from the ship trajectory. The 

diverging waves have come from the source point more recently than the 

transverse waves. For example, the diverging wave with  90  has just come 

from the source point at the present time. And, the transverse wave with  0  

has come from the source point at the longest time before. Kelvin (1887) found 

that, in deep water, the diverging and transverse waves meet at a point (i.e., cusp 

locus) farthest from the ship trajectory with  26.35 . We may define the 

cusp locus angle   which is the angle between the cusp locus line and the ship 

trajectory. Here, the cusp locus line means the line connecting the present ship 

position and the cusp locus. The Kelvin’s cusp locus angle is  47.19 . 

 

 

Figure 1. Detailed shape of diverging and transverse waves (Kelvin,1887). 
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Havelock (1908) found that the cusp locus angle   is different at a different 

Froude number rF  as follows: 
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Here, the Froude number is defined as ghUFr   where U  is the ship 

speed and h  is the water depth. The Figure 2 shows the variation of 

Havelock’s cusp locus angles with the Froude number. When the Froude number 

is less than 0.4, the cusp locus angle is  47.19  which was found by Kelvin 

(1887). As the Froude number increases from rF =0.41 up to rF =1, the cusp 

locus angle increases from  48.19  up to  90 . And, further, as the 

Froude number increases more than the unity, the cusp locus angle decreases 

down to  0 . However, he could not show a detailed crest pattern of 

diverging and transverse waves as Kelvin did.  

 

Figure 2. Variation of cusp locus angle with Froude number (Havelock, 1908); solid line = Havelock 

(1908), solid line with dots = present study. 

Here we apply the Kelvin’s approach to shallower water and develop a 

method to show detailed crests of diverging and transverse waves. When a ship 

travels with a speed U  to the + x -direction, the ship wave may be regarded as 

a group wave travelling from the source point (see Figure 3). Thus, the velocity 

potential can be defined as 
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zZyYtUxX  ,,                    (3)  

where  ZYX ,,  and  zyx ,,  are the coordinates in a fixed frame and a ship-

speed moving frame, respectively, and   is the angle of the wave ray from the 

x -axis. In the moving frame, the velocity potential of the ship waves can be 

defined as  
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The velocity potential will be stationary from the view-point of the ship, 

thus we get the following relation 

 coskU                          (5) 

The linear dispersion of waves is 

khgk tanh2                           (6) 

Substituting Eq. (5) into Eq. (6) gives the following equation 

kh
U

g
k tanh

)cos( 2
                       (7) 

 

Figure 3. Ship waves in different coordinate systems. 

Using the fixed point iteration method, we can obtain the ship wave number 

in water of intermediate depth. We start with the deep-water wave number 0k  

as 

20
)cos( U

g
k                            (8) 

And, after the i -th iteration, we get 

,2,1,tanh 10   ihkkk ii                 (9) 
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We use the inclined coordinate  YX ,  normal to the wave crests in a 

fixed frame. The ship waves will travel in groups such that tXdkd   

which can be expressed as 

  0 tXk
dk

d
                      (10) 

where 

 cossincossincos tUyxYXX          (11) 

Substituting Eq. (11) into Eq. (10), using Eq. (5), and using the chain rule 

for  k  yield the following equation 

   0sincos  


yxk
d

d
    (12) 

In deep water, the wave number is  20 cosUgkk   and thus Eq. (12) 

can be written as 
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Generally Eq. (13) can be written as 
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In water of intermediate depth (i.e., not deep water), wave number depends 

on the water depth. Substituting Eq. (9) into Eq. (14) gives the following 

equation 
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which can be expressed in x  and y  as 
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where C is an arbitrary constant number. 

3.   Numerical experiments. 

Numerical experiments were conducted by the FLOW-3D in order to simulate 

ship waves in two cases of intermediate-depth waters ( 86.0kh  and 

42.0kh ). Water depth was fixed as h =10m and the ship speeds are 

different as U =6 m/s and U =8 m/s and the Froude number are rF =0.61 and 

rF =0.81. As the ship speed increases compared to the gravity-affected long 

wave speed, all the ship wave components would be located further behind and 

outside and thus the cusp locus angle would increase. Table 1 shows tested ship 

dimensions which are typical to a yacht in a coastal area. 
 

Table 1. ship dimensions 

dimension 
length 

(m) 

 

length 

overall (L) 
8.53 

beam (B) 2.74 

draft (D) 1.00 

 

Figure 4 shows numerical solutions of the surface elevations by the FLOW-

3D for 86.0kh . At this time, the ship was located at  YX , = (560m, 0m). 

At the initial time the ship started at  YX , = (0m, 0m). This figure shows 

clearly transverse waves as well as the diverging waves.  

Figure 5 compares numerical solutions of the crest points with analytical 

solutions by the present method (i.e., Eq. (15)) and Kelvin’s method (i.e., Eq. 

(13)). The cusp locus angle was analytically found as  60.19  which was not 

so different from the Kelvin’s cusp locus angle of  47.19  because the 

Froude number ( rF =0.61) was much less than the unity.  

Figure 6 shows numerical solutions of the surface elevations by the FLOW-

3D for 42.0kh . At this time, the ship was located at  YX , = (573m, 0m). 

This figure shows due to higher speed the ship waves were located further 

behind the ship and further outside the ship trajectory.  

Figure 7 compares numerical solutions of the crest points with analytical 

solutions by the present method and Kelvin’s method. The cusp locus angle was 
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 81.24  which was significantly different from the Kelvin’s cusp locus 

angle of  47.19  because the Froude number ( rF =0.81) was close to the 

unity.  
 

 

Figure 4. FLOW-3D solution of water surface elevations ( 86.0kh , rF =0.61). 

 

Figure 5. Comparison of FLOW-3D solutions of the crest points with analytical solutions of the 

present method and Kelvin’s method ( 86.0kh , rF =0.61): points = FLOW-3D,     = Kelvin,      

= present study. 
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Figure 6. FLOW-3D solution of water surface elevations ( 42.0kh , rF =0.81). 

 

Figure 7. Comparison of FLOW-3D solutions of the crest points with analytical solutions of the 

present method and Kelvin’s method ( 42.0kh , rF =0.81): points = FLOW-3D,     = Kelvin,      

= present study. 
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