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Summary 
From the numerical point of view, the complexity of the fluid dynamic processes involved has so far 
hindered the direct application of Navier-Stokes equations within the armour blocks, due to the 
complex geometry and the presence of strongly non stationary flows, free boundaries and turbulence. 
In the present work the most recent CFD technology is used to provide a new and more reliable 
approach to the design analysis of breakwaters, especially in connection with run-up and overtopping. 
 
The solid structure is simulated within the numerical domain by overlapping individual virtual elements 
to form the empty spaces delimited by the blocks. Thus, by defining a fine computational grid, an 
adequate number of nodes is located within the interstices and a complete solution of the full 
hydrodynamic equations is carried out. In the work presented here the numerical simulations are 
carried out by integrating the three-dimensional Reynolds Average Navier-Stokes Equations coupled 
with the RNG turbulence model and a Volume of Fluid Method used to handle the dynamics of the free 
surface. 
 
The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' 
validation, the numerical run-up and reflection effects on virtual breakwater (Armour in AccropodeTM, 
toe protection and filter layer in stones) were compared with some empirical formulae and some 
similar laboratory tests. While for overtopping two different breakwaters are considered, real structures 
both located in Sicily: one a typical quarry stone breakwater, another a more complex design 
incorporating a spill basin and an armoured layer made up by CORE-LOCTM blocks. 
 
The results of this approach are good but, at present, this numerical approach can be used to support 
to the physical tests in a preliminary design phase in order to comparisons between several project 
solutions with significant minor cost. 
 

Introduction and Background 
Until recently physical tank models, and formulae derived from them, have been the only way to 
evaluate the effects of wave actions on breakwaters. In the last ten years, advances of Computational 
Fluid Dynamics (CFD) in free surface problems have lead to a decisive step forward, to the point that 
nowadays the design of any important coastal structure will necessarily include 2D or even 3D 
simulation of the flow around the structure, in place or in connection with laboratory experiments. The 
now standard practice involves the numerical integration of Reynolds Averaged Navier-Stokes 
(RANS/VOF) equations on a fixed grid, with one or more of the available turbulence models (K-ε, K-ω, 
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s the molecular viscosity, ui is the ith component of the instantaneous velocity in the pores, 
the instantaneous effective pressure and gi the ith component of the gravitational force. 
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Tests and Validation 
The characteristics of the wave motion are shown in table 1. These characteristics are determined 
through the two probes method of separation of incident and reflected waves (Goda and Suzuki, 
1976). 
 

Table 1. Wave characteristics for the Kr validation 

ID SIMULATION Regular waves  ID 
SIMULATION Irregular waves 

ACCROPODE Hi (m) T (s)  ACCROPODE Hs (m) Ts (s) 

RNS1 0.631 3.43  INS1 2.768 7.97 
RNS2 1.024 4.29  INS2 2.036 6.73 
RNS3 0.749 5.15  INS3 0.826 4.14 
RNS4 1.365 4.20  INS4 1.410 5.01 
RNS5 1.083 5.25  INS5 1.634 5.30 
RNS6 1.288 6.30  INS6 1.129 5.18 
RNS7 1.631 4.85  INS7 2.441 7.17 
RNS8 1.521 6.06  INS8 1.697 7.13 
RNS9 2.403 7.28  INS9 2.554 8.72 

RNS10 2.116 5.42  INS10 2.978 9.35 
RNS11 1.794 6.78  INS11 1.131 4.63 
RNS12 2.824 8.14  INS12 1.924 5.62 
RNS13 1.870 5.69  INS13 1.617 5.93 
RNS14 2.295 7.11  INS14 2.413 7.91 
RNS15 2.966 8.53  INS15 3.721 10.95 
RNS16 2.473 6.42  INS16 1.688 6.55 
RNS17 2.858 8.02  INS17 3.025 8.71 
RNS18 2.251 9.63  INS18 1.010 3.99 

    INS19 0.807 3.67 
    INS20 0.597 3.19 

 
Reflection  Analysis 
Wave reflection near a maritime structure has been studied for many years in order to define the 
parameters that most affect the phenomenon.  
 
Based on experimental tests, several equations have been defined, according to the geometrical 
characteristics of the structure and the waves, to quantify the reflection coefficient Kr defined as the 
ratio Kr = Hr/Hi between reflected (Hr) and incident (Hi) wave. A vertical impermeable structure will 
have a Kr of about 1, while a porous one will have a Kr<<1 . 
 
In order to validate the FWAU procedure described above comparisons were made between the 
values of Kr obtained through the application of some empirical formulae, e.g. Van der Meer (1992) 
and Zanuttigh & Van der Meer (2006), and the numerical ones obtained from the processing of 
simulation results. 
 
Four examples of correlations between equation and numerical Kr is shown in Figure 3, while all 
results is summarized in Table 2: 
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Figure 3. Example of correlation between equation and numerical Kr 

 
Table 2. Kr validation regular and irregular waves - AccropodeTM 

AUTHOR FORMULA Mean Error 
  Regular waves Irregular waves 

Ahrens Seeling 
(1981) �� � 0.6��

6.6 + �� 1.08 1.19 

Buerger et al. 
(1988) 

�� = 0.6��

12 + �� 0.86 0.95 

Postma 
(1989) 

�� = 0.125�� 0.88 0.96 

Van Der Meer 
(1992) 

�� = 0.07����.�� + �� 0.91 1.00 

Hughes & 
Fowler (1995) 

�� = 1
1 + 7.1��.� 0.99 1.11 

Zanuttigh & 
Van Der Meer 

(2006) 
�� =  !ℎ�0.12��.�#� 0.97 1.06 

 
In the following, for extra confirmation of good results, a comparison is made between the numerical 
data and the experimental work proposed by Zanuttigh & Van der Meer (2006), where a substantial 
number of experimental tests carried out in a scale model or prototype. In particular, the results 
obtained through the FWAU model have been included in a diagram representing the results of about 
6000 physical tests, to check whether the numerical tests were within the area relating to 
AccropodeTM. From Figure 4 it is clear that this condition is verified (Figure 4). 

 
Figure 4. Example of Numerical Kr vs. physical data (Zanuttigh &Van der Meer, 

2006) 
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Run-Up Analysis 
The evaluation of the wave motion's slope along the external face of the breakwater (run-up) has great 
importance in the design of marine works. This phenomenon heavily influences the choice of the 
design height, especially in order to limit overtopping events. 
 
In the following, a comparison is made between the run up value obtained by some equations in the 
literature (Aces, 1975), (Losada & Curto, 1981), and those obtained by the numerical tests carried out.  
The values of run up were measured according to the scheme shown in Figure 5b, through the 
snapshot of the central section of breakwater, with a frequency of 0.5 seconds (Figure 5a), and the 
value of the corresponding run up was measured. Particularly the runup measured is the distance 
between SWL and the highest point of contact with the breakwater (Dentale et al., 2013). 
 
For each simulation, then, 601 run up values have been measured. From the latter have been 
extracted the so called run-up statistics: 

• Run up 2%: Average of the highest 2% of the numerical measured Run up values; 
• Run up 10%: Average of the highest 10% of the numerical measured Run up values; 
• Run up 1/3: Average of the highest third of the numerical measured Run up values; 
• Run up medium: Average of all numerical measured Run up values; 

 

  
Figure 5a. Run up time series 

evolution 
Figure 5b. Example of wave motion's frame 

 
An example of correlation between equation and numerical run up is shown in Figure 6, while the 
results for all simulations were summarized in Table 3: 

  
Figure 6. Correlations between empirical formulae of Table 3 and numerical run up 
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As can be seen from the analysis of the parameter introduced, the numerical data yield a good fit with 
the formulae of Aces (1975) and Losada & Curto (1981).The above analysis indicates that the 
numerical model implemented quite correctly interprets the phenomenon studied.  

 
Overtopping Analysis 
For a preliminary validation of the proposed methodology to analyze the overtopping phenomenon, 
two real breakwaters has been investigated. The first one is a composite breakwater, with a complex 
geometry including a spill basin and an armoured layer made up by CORE-LOCTM, is being designed 
for the protection of the industrial port in Gela (Sicily), as shown in Fig.7a  (in the following this section 
will be referred to as "Gela”). 
 
As it can easily be seen, the presence of a spill basin makes the cross section entirely different from 
the standard shape taken as a reference for various empirical formulae (Cavani et al., 1999), (Cuomo 
et al., 2005). No experimental data is available on the overtopping, except for a single value deriving 
from model tests carried many years ago. 
 
The second one (in the following "Sant'Erasmo") is a more conventional large quarry stone breakwater 
designed for the new port of Sant’Erasmo (Sicily) and illustrated in Fig.7b, has been the object of 
extensive laboratory tests. 

 

Figure 7a. Port of Gela: Cross section of rubble mound breakwater 
 

 

 Figure 7b. Port of Sant'Erasmo: Cross section of rubble mound breakwater 
 

As for the run up and reflection coefficient, the simulations were carried out by integrating the Navier-
Stokes equations in the complete form (3D), with a RNG turbulence model, and by using a 
computational grid with two “nested” meshes, the finer one being located in the breakwater area, 
where the flow has to be computed within the interstices and therefore the hydrodynamics is more 
complex. Fig. 8a and Fig. 8b show the numerical model of breakwater for Gela and Sant'Erasmo.  



 

 

Figure 8a. Numerical model of the 
breakwater Port of Gela

 
The Sant’Erasmo experiments were carried out in the wave flume of the Hydraulic Laboratory of the 
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The Sant’Erasmo experiments were carried out in the wave flume of the Hydraulic Laboratory of the 
The flume, with lateral transparent glass walls, is 18 m 

 wavemaker allows both regular and irregular wave series to be 
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Within the limits of the usual approximation of this kind of experiments, the 3D RANS/VOF methods 
compare well with the tank test. It is worth remembering that - unlike seepage RANS/VOF 
methods does not require any parameter calibration. 

In the Fig. 9 (left) are reported the information for the Gela case study. Only one tank test result is 
available (Estramed), but in this case seepage RANS/VOF has also been considered (Q 

). This latter approach consistently overestimates the overtopping flow values. 

The results show a good agreement between the numerical simulation obtained with FLOW
) and the experimental data (Estramed). It is also worth remarking that:

i) the presence of the spill channel between the crest of the rubble mound breakwater and the wave 
wall produces a relevant reduction of wave overtopping compare to a traditional cross

ii) the simulations performed with a porous media approach produce an overestimation of the 
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Figure9. Experimental and numerical results - Sant'Erasmo (right), Gela (left) 

 
Conclusion and Further Work 
The results of a new numerical approach to model the hydrodynamic behavior of rock mound 
breakwaters have been presented.  
 
Unlike the traditional approach whereby a porous media seepage flow is used to simulate the flow, the 
structure is here modeled by overlapping individual 3D elements as it happens in the real world; the 
numerical grid is fitted such to have enough computational nodes within the voids so as to directly 
assess the flow between the blocks. The procedure implemented is based on integrating CAD and 
CFD techniques with a surface tracking VOF algorithm. 
 
The results obtained for the reflection coefficient and the Run-up suggest that the described 
methodology could be used successfully to analyze the phenomena of interaction between the wave 
motion and a rubble mound with different armour layer (Brown & Dentale, 2013). 
 
A real life overtopping problem with an unusual geometry (spilling basin) could not be properly treated 
with standard available formulae. Since direct experimental results were not available, an innovative 
RANS/VOF procedure was tested and calibrated against tank tests with a different geometry. The 
new, and more complex, technique produced better results than the traditional approach whereby the 
flow within the armour is computed with seepage flow approximation. 
 
The results show that although the research is still at an early stage, the model could be used in the 
preliminary design stage, in the private sector, to make comparisons between different design options 
to significant cost savings. 
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