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Abstract

A simplc explanation for moving contact lines based on surface irregularities has been proposed
by L.M. Hocking. His thesis is that fluid slip at & solid boundary cannot occur al microscopic
scales, but surface irregularities with microscopic scales can induce flow siructures that may be
interpreted as slip from a macroscopic point of view. The principal deficiency ol Hocking’s
proposal 1s that there i1s no direct evidence to support it. In this paper we usc computational fluid
dymamics simulations to show in detail how a contact line can move over or get stuck on a rough
surfuce.

1. Introduction

At a liquid/alr interface moving over a solid surface there should be no velocity slip. However, it
is well known [1,2] that flow at a contact line, when modeled using a continuum descriplion,
exhibits singularities. The singularities arc associated with the use of continuum flow equations
{1.c., the Navier-Stokes equations) together with the no-slip boundary condition [2]. Having said
this, it is important to recognize that this difficulty with singularities is conflined to a regicn about
the contact line of molecular scale where there is no reason 1o expect a continuum maodel to be
valid.

In most numerical treatments of flows involving moving contact lines a finite-clement-based
technique is used in which a computational grid node must be placed at the location of a contact
line. Placing a node al a poini known to have singularities is not a good idea. It necessitates the
intreduction of ad hoc assumptions, €.g., specifying some amount of slip on the solid surface or
specilying the location and/or dynamic contact angle.

In this paper we use a finite-control-volume technique, which does not require the introduction
ol ad hoc assumptions. The finite-control-volume method does not atlempt to assign speeilic
values fo quantitics at the location of a control line, instead it simply keeps track of the mass,
momentum, and energy in the contrel volume element. With this approach we focus on
modeling the basic fluid-dynamic conservation processcs.

The locations of centact lines, and for that matier the location of fluid surfaces or interfaces are
tracked by a volume-of-fluid (VOF) method in which the fraction of liquid in each compulational
grid element 1s recorded. Using the fluid fraction value in an element together with the fractional
values in neighboring elements one can easily locate surfaces and even compute surface slopes
and curvatures [3].

At a contact line the only additional consideration necded beyond the standard dynamic
processes contained in the Navier-Stokes equations is a mechanism to describe the adhesion
between liquid and a solid substrate. This is donc by assuming that the adhesion foree, which
arises [rom molecular interactions between solid and liquid, can be characterized by a static
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contact angle. In any grid element containing a contact line {i.c., a fluid interface and a sohid
surface) there is an additional adhesion force computed and added (o the other forces acting on
the element {e.g., pressures, body forces, viscous stresses, advective processes, ¢te.). The
additional [orce 1s computed from the slope of the fluid surface with respect to the solid surface
and assuming that Young's cquation dcscribes the proper balance of forces under static
conditions [4].

In dynamic situations involving moving contact lines, we continue 1o compute adhesion forces
using the static contact angle, a physical quantity that can be casily measured. This is justified
because the molecular processes responsible for adhesion forces occur on space and time scales
that arc orders of magnitude smaller and faster, respectively, than those of macrescopic flow
processes. Because of this macroscopic processes cannot have any significant influence on the
molecular level.

Dynantic contact anglcs arc not specificd but computed as part of the solution in the finite-
control-volume method using the VOF technique. They arise aulomatically from the basic
balance of forces on which the numerical method is built. This is onc of the several practical
advantages of this modelling approach.

All the simulations presented in this paper were performed using this combined control-velume-
VOF approach as it has bcen implemented in the commercial software program FLOW-3D®
developed by Flow Science, Inc. located in Santa Fe, New Mexico, USA. Reference [5] may be
consulted for additional information about this program.

2. Demenstration Application

Before proceeding with the main topic of the paper, we present a demonstration of the utihiy and
viability of our modeling approach. In particular, the modeling of dynamic contact lines with
static contact angles characlerizing liquid-solid adhesive forces. The application is that of the
fingering observed in liquid films flowing down an inclined surface [6,7]. Experimental
observations show that two distinct patterns of fingering occur. One pattern, corresponding to
small contact angles (i.e., highly wetting}, exhibits wedge shaped fingers whose top and bottom
limits both move downward. The secend pattern, corresponding to large contact angles {i.e.,
poorly wetting), is characterized by long fingers of neatly uniform width whose top most limits
are not noving downward,

In Fig. 1 we show the results of two simulations using the numerical approach described earlier,
except in this case a further assumption of depth-averaged flow has been made [8], which is
justified because of the thinness of the liquid films. The only difference between the two
simulations is the value of the static contact angle (0° versus 70°).

Expcrnimental results reproduced from [6] are shown for comparison, although they do not
directly correspond o the conditions in the simulations.  The siimulations have wavelengths
within experimentally observed limits and exhibit the qualitative featurcs scen in the
experimental results,



While 2 more detailed investigation of fingering would be interesting, the purpose of presenting
these results here 15 only to show that a static contact angle describing liquid-solid adhesion has
validity,

3. AlLittle Problem

Many useful simulations have been performed with the modeling approach described here
showing good agrcement with observations. However, there is one everyday observation that
appears not to be modeled. After a rainstorm the water on our windows mostly tuns down the
window in rivulets, but some small drops appear stuck in place. How can this be?

Figure 1: Fingering of liguid sheets, Zero contact angle on left and 70° contact
angle on nght. Experimental results for similar, but not exactly the same, cases
below (from Ref 61

According to our model the only force between the water and the window glass is an adhesion
described by a stalic contact angle. This is a constant [orce normal 1o the contact line. When
infegrated around a closed contact ling, such as that swrounding a droplet, the force must
integrate to zero. Computations conlirm this. Droplets might move slowly because of viscous
stresses, but they still move down under the action of gravity. How 1s it, then, that small drops
arc obscrved to be stationary?

4. Little-Problem Solutions

Of coursc, onc explanation is that the window surface may be dirty and change the local valuc of
contact angle, but observations show that even well cleaned glass exhibits this behavior.

Another possibility, that his attracted the interest of manufacturers of products such as paint and
fabrics, is the roughness of solid surfaces. In these cases the object is usually to produce the
oppositc of struck drops, that is, how to make surfaces more waterproof by reducing their
wettability [10].

L.M. Hocking has proposed [9] thal confact lincs move over a solid surface because microscopic
irregulanties induce flow structures that may be interpreted as “'velocity slip™ from a
macroscopic point of view,



I the remainder of this paper we shall look into the issue of microscopic roughness and show
how it can change dynamic contact angles, approximate slip conditions, reduce wettability, and
even prevent small drops from flowing down a vertical surface,

5. Flow over a Rough Surface

It is instructive to see how a contact line moves over a rough surface consisting of transverse,
regularly spaced, rectangular slots. For our test casc the slots are 2um deep and 10pm wide, and
spaced to have 10pm wide solid pieces between them. The static contact angle with the solid
was chosen to be 120°, Water is the working fluid. The test consisted of driving water at 30cm/s
through a two-dimensional channcl of height 15um, having a free-slip top boundary.

In the first test, used as a control, the “roughncss™ slots along the bottom of the channe! were
omitted. The contact line moves smoothly over the solid surface with a dynamic contact angle of
about 115°, sce Fig. 2a. One would have expected that the advancing contact angle would have
been larger, not smaller, than the static contact angic. In this case, howcver, the top boundary
symmetry plane imposes a 90° contact angle on the liquid surface, which coniribules to a
straightening of the curvature at the bottom boundary and results in a lower advancing contact
anele. The proximity of the top boundary will not affect the conclusions to be drawn from the
remaining lcst cases.

Figurc 2: Flow of liquid with static contact angle 120° over (a) smooth
surface, (b) rough surface, and {¢) liquid [illed rough surface,

Repeating the simulation with the rough boundary, it is immediately cvident that the water
surface gels attached to the edge of a slot and remains there until the surfuce becomes horizontal
and makes conlact with the next, downstrcam portion of the boundary, sec Fig.2b. The liquid
cannot {11l in the slois because of the non-welting static contacl angle. The good way Lo think of
this is that any adhesive force existing along the sides of a slot would be directed upward into the
fluid.

An cffective, advaneing contact angle for this case 1s a mixture of the 115° angle when the
contact line moves across the solid portions of the boundury and 180° while the liquid surface i1s
pulled out flat from the edges of the slots. [f[3 1s the fractional area, per unit area, of solid
surlace then the effective advancing contact angle 8, 1s approximated by 6,=1203+180(1-).



This result (s basically the same as that [ound for [low over fabric surfaces, which consist of
parallel rows of circular cylinders instead of rectangles [10].

Finally, we repeat the simulation once again, but this ttime with the slots initsally filled with
water, Fig.2c. When the liquid contact line reaches the beginning of a slot, instead ol being held
back at the corner as in the empty slot case, it shoots rapidly across the surface of the liquid in
the slot approximating zero contact angle behavior. Actually, in our example the zero angle
concept is not fully realized because the liquid in the slot 1s pulled into the main body of Mwnid
leaving a small portion of the slot dry ahead of the contact ine. This result is partly due to the
limited resolution used in the simulation. In reality there would probably be a thin viscous layer
of water in the slot that would prevent water in the slot from being compielely pulled oul te form
a dry region. The effective advancing contact angle in this, pre-wetled, situation is
8,=120B+0(1-B)=120p.

Hocking’s assertion that micro-scale disturbances can be interpreted as a kind of velocity slip
when looked at from the point of larger scalcs is supported by the computed velocity field.
Vertical velocity disturbances iniroduced by the roughness slots are confined to a height above
the solid surface comparable to the depth/width of the slots. That 1s, to microscopic depths for
microscopic roughness elements, This is shown graphically in Fig.3, which gives the horizontal
velocity distribution in the layer of control volumes immediately above the surface. With further
arid refinement, the velocity above the solid pottions of the surface would tend to zero, but
above the slots the velocity remains non-zero. Averaging over many roughness elements for a
macroscopic view resulls in a non-zero horizontal velocity that could be interpreted as an
cifeetive slip.
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Figure 3: Horizontal velecity profilc immediately above solid surface.
Herizontal line segment at right side is zero level.

6. How do Drops Get Stuck?

To see how roughness can hold a droplet on the surface of a vertical plate, consider an example
of a hemispherical droplet having a static contact angle of 90°. This contact angle implics an
adhesion force normal to the solid surface. A drop on a smooth surface would then be expected
to run off a tilted surflace, its motion being retarded only by viscous shear stresses. On the other



hand, we have also seen that on rough surfaces contact hines arc caught at roughness edges. Ona
rongh surface there must be regions having a surface nonnal with components parallel with the
macroscopically smooth surface. At these locations adhcsion forces can act counter to gravity.

The gravitational force pulling a drop down is proportional to its size (mass). A simple upper
bound for a net adhesion force would be to have it acting on roughness surfaces with a total
width cqual to the diameter of the droplet (1.e., no nct restraming forces along the sides of the
drop). Equating this adhesion force, 4Ra, to that of gravity, (27/3)pgR”, gives thc maximum
droplet radius that could be held stationary on a vertical wall. For water this value is R=0.38cm.
This estimate 1s surely an upper bound, but it offers a reasonable estimate of the size of drops
observed (o remain at rest (e.g., about R=0.3¢m on our office windows).

Figure 4 shows simulations that illustrate the effect of roughness. A cylindrical cap of fluid with
a 60° static contact angle has been nitialized on a vertical surface such that is imakes a 60° angle
with the solid, Fig.4a. The maximum height of the drop above the surface 1s 0.5mm. Afier some
time the drop on the rough surface (60pm groves), Fig.4b, has only adjusted its contact lines 1o
the edges of the groves and has no net vertical motion. In contrast, the same drop on a sniooth
surface, Fig.dc, is sliding downwards.

7. Summary

A numerical simulation method has been used to investigate the microscopic behavior of a
moving contact line in the presence of roughness elements. The qualitative, macroscopic results
agree with observations, but the details of the local flow behavior, which has never been directly
obscrved, is found to be quile complex. It has becn argued that roughness is one way for small
droplets to remain at rest on a tilted surface. Computational examples clearly exhibit this
bechavior.

These results demonstrate how a continuum model based on conservation laws applied 1o finite
contrel volumes can be used for detailed investigations of wetting and drying phenomena on
non-uniform surfaces. Because the model appreach described here exists in a commercial
sofiware product [5], it is available for immediate application to the investigation of stability and
quality issues associated with many types of coating processes.
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Figure 4: Droplet on a vertical wall. () initial condition, (b) stuck on
roughness elements, and {c¢) sliding down smooth wall.
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