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This paper presents a variable aperture design based on the microelectrofluidic technology which integrates 
electrowetting (EW) and microfluidics. EW induces the contact angle change by an applied electric field and it has 
advantages of simple structure, fast response, and low power consumption, so it has wide applications in digital 
microfluidics [5, 6], liquid lenses [7, 8], and displays [9, 10]. The microelectrifluidic iris (MEFI) takes an interest in 
gradual filling a surface channel with an aqueous by capillary action and it is controlled with the contact angle change by 
EW. The MEFI allows nearly perfect circular apertures to be controlled with high driving speed, high aperture ratio, and 
clear aperture boundary without any external actuator. 

2. DESIGN AND PRINCIPLE 
The proposed MEFI has an aqueous diaphragm in two connected circular surface microchannels formed by three 
transparent plates and two spacers (Figs. 2 and 3). The middle plate has a center hole and edge holes for transparent air 
or oil and opaque aqueous passage, respectively. The surfaces of each plate are allowed to have conducting electrodes 
and an insulating dielectric for EW actuation. Especially, concentric control electrodes are recommended for digital 
control of circular aperture in the 1st channel, and a reference electrode for grounding the aqueous and hence improving 
the EW efficiency. It is desirable that the 2nd channel is higher than the 1st channel for high aperture ratio, however, the 
heights affect the Laplace pressure at the fluidic interfaces and driving performance significantly. The hydrophobicity of 
the channel surface is very important and high inherent contact angle and low contact angle hysteresis makes the EW 
actuation more effective. 

 

 
Figure 2. Schematics of the MEFI; (a) top and (b) cross-sectional views. 

 

The fundamental operating principle of the MEFI is based on the Laplace pressure. In the initial state, the confined 
aqueous ring makes two fluidic interfaces on the hydrophobic surface channels on which the Laplace pressure is same. 
The Laplace pressure (P1 and P2 for the 1st and the 2nd channels) and the pressure difference (ΔP) at the fluidic interfaces 
can be calculated from the Young-Laplace equation as follows; 
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where, γ, h1, h2, r1, r2, θ11, θ12, θ21, and θ22 are the fluids’ interfacial tension, heights and lateral radii of the 1st and the 2nd 
channels, and contact angles at the three-phase contact lines (TCLs) on the channels, respectively.  

 

 
Figure 3. Schematic exploded oblique view of the MEFI. 

 

When a certain voltage is applied between the control electrode beneath the TCL and the reference electrode, the contact 
angle changes on the activated control electrode as the following Lippmann-Young equation; 

 

2
0 2

coscos V
γ

cθθV +=
 (4) 

where, θ0, θV, c, and V are initial advancing angle, electrowetted contact angle, capacitance per unit area of the dielectric 
layer, and the applied voltage. At high voltage over the threshold, the induced positive pressure difference makes the 
TCLs on the 1st channel advance to the center and the aperture narrow. At this time, θ11 and θ12 are same as θV and θ0, 
respectively, and θ21 and θ22 are receding angle of θ0-α, where α is the contact angle hysteresis. If there is no potential 
difference between the control and reference electrodes, the pressure difference becomes negative and it makes the TCLs 
on the 1st channel recede and the aperture widen to the initial state. At this time, θ11 and θ12 are receding angle of θ0-α 
and θ21 and θ22 are advancing angle of θ0.  

3. SIMULATION & RESULTS 
Figures 4 shows the calculated pressure difference, from Eq. (3), of the MEFI having maximum and minimum aperture 
of 4.0 mm and 0.6 mm diameter, respectively, when the electrowetted contact angle of water on a hydrophobic Teflon 
surface is ~80°, the saturated contact angle, and the 1st and the 2nd channel heights are 100 and 250 μm, respectively. For 
the more accurate calculation, advancing angle of 116° and receding angle of 111° were also considered [11]. A positive 
pressure difference makes the aperture narrow and a negative pressure difference makes the aperture widen. EW with the 
concentric electrodes allows digital control of the circular aperture possible. If the middle plate has the control electrodes 
face to face with the control electrodes on the bottom plate, the dual EW makes the driving force for narrowing the 
aperture double [12], and the positive pressure difference increases significantly (Fig. 4a). Although the MEFI can be 
reversed without EW actuation, EW on the 2nd channel makes the widening pressure difference bigger and it may results 
the widening speed faster than before when the control electrodes can be patterned on the 2nd channel surfaces as well as 
the 1st channel surfaces (Fig. 4b).  
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(b) 

Figure 4. Calculated pressure difference of the MEFI; when (a) narrowing and (b) widening the aperture. 

 

Figure 5 presents the computational fluidic simulation results using Flow-3D (Flow Science, Inc., USA). Though the 
shape and number of the aperture can be controlled easily by patterning the control electrodes in the fabrication process, 
the control region in the 1st channel was divided in five discrete steps by concentric ring patterns to have circular aperture 
in the simulation. The fluidic interface in the 1st channel advanced from the outer ring or receded from the center of the 
MEFI to the boundary between the hydrophobic region and the hydrophilic region. As the results, the response time for 
the aperture diameter from 4.0 mm to 0.6 mm is 36 msec in the case of single EW actuation and as fast as 3.8 msec in 
dual EW actuation. The average advancing velocity of the fluidic interface at the 1st channel is 48 mm/sec and 450 
mm/sec, respectively. The response time and the average velocity for widening the aperture are 11 msec and 160 mm/sec, 
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