

# METAL FLOW AND HEAT TRANSFER IN BILLET DC CASTING USING WAGSTAFF® OPTIFILL™ METAL DISTRIBUTION SYSTEMS

Bin Zhang and Dave Salee

Wagstaff Inc.

3910 N. Flora Road, Spokane Valley, WA 99216, USA



#### **Outline**

- Introduction
- Model Description
- Result and Discussion
  - Metal fill and temperature contour
  - Metal fill start time and fill complete time
  - Metal temperature contour and flow during run cast
  - Metal temperature history and metal heat loss
- Summary
- Acknowledgements



#### Introduction

**Goal**: Optimize the design of a metal distribution system to improve metal fill uniformity, obtain consistent start-up process control and premium quality billet

- Decrease total metal fill time and Optimize fill uniformity - eliminate bleed-out, butt defects (hot/cold butt separations)
- Reduce heat loss obtain less temperature gradient across casting positions
- Minimize turbulence and pre-solidification Maintain good process and metallurgical quality







# Original, RapidFill<sup>TM</sup> and OptiFill<sup>TM</sup>



Original: simple and maximized pit utilization



**OptiFill™**: draws desirable features from both RapidFill™ and the Original systems, thereby maintaining simplicity while optimizing metal fill performance.



RapidFill™: improve the uniformity of fill and reduce the total fill time and overall heat loss; but require superstructure with motorized start dam and might reduces the maximum number of billet positions

Investigation: Original and OptiFill<sup>TM</sup> systems:

- Metal fill uniformity and metal residence time
- Thermal, fluid flow fields and heat losses



### Model Development

#### Billet Systems

- 7" 96 strands, 6063
- Original =  $165" \times 60.0"$
- OptiFill<sup>TM</sup> =  $165" \times 60.0"$
- Cavity cross section area

#### The Model

- Turbulent model
- Thermal buoyancy convection
- Solidification

#### Meshing

- Cell size = ~10 mm
- Total cells = ~1.9 million

#### Initial Condition (IC) and Boundary Condition (BC) Assumptions

- T  $_{inlet\ metal}$  = 700  $^{\circ}$  C
- Constant metal height = 110 mm
- T  $_{\text{refractory}}$  = 27  $^{\circ}$  C
- Run cast speed = 2.17mm/sec. (130.2mm/min)







### Metal Fill and Temperature Contour



Metal fill and temperature contours ~5.0 sec. after dams are tilted open



#### Metal Fill and Temperature Contour



Metal fill and temperature contours ~15.0 sec. after the dams are tilted open Wag/taff



#### Metal Fill and Temperature Contour



## **Metal Fill Uniformity**





The metal fill start time, fill complete time and residence time for the two systems



### **Temperature Contour during Cast**



Metal temperature contours at ~100 sec. of casting (Cast Length ≈ 199 mm)



# **Temperature Contour during Cast**



#### **Temperature Contour and Flow**



Metal temperature and flow at  $\sim$ 350 sec. casting ( $\sim$  6.5 cm from trough bottom, cast length  $\approx$  742 mm)



### **Temperature History and Heat Loss**





#### Summary

Heat transfer and fluid flow models for Original and Wagstaff<sup>®</sup> OptiFill<sup>™</sup> metal distribution systems for billet casting have been developed to investigate metal flow and heat losses. Optifill<sup>™</sup> has the following benefits:

- Less fill start time difference in OptiFill<sup>™</sup> (more metal to cold end early)
   OptiFill<sup>™</sup> → ~4.6 sec, Original → ~17.4 sec
- Less fill complete time difference in OptiFill<sup>TM</sup> (more metal to cold end)
   OptiFill<sup>TM</sup> → 11.2 sec, Original → 22.6 sec
- Less total fill time in OptiFill<sup>TM</sup> (smaller runner trough + ingate + melt pool)
   OptiFill<sup>TM</sup> → ~21.1 sec, Original → ~26.3 sec
- Less heat loss in OptiFill<sup>TM</sup> (faster metal flow in the runner trough)

  OptiFill<sup>TM</sup>  $\rightarrow \Delta T$  is ~15 °C less at start of cast and 3-5 °C less in run state



## Rahab Original System to OptiFill<sup>TM</sup>

Old System: 7" x 44 strands Original Rehabbed System: 7" x 44 strands OptiFill™

**Benefits:** 

- ~12 sec less total fill time (OptiFill<sup>TM</sup> = ~15.0 sec, Original = ~28.0 sec)

- ~10-15 °C less heat loss (OptiFill<sup>TM</sup> = ~10 °C, Original = ~20-25 °C)

Consistent start-up process





Wagstaff® OptiFill<sup>TM</sup> metal distribution system is the preferable choice in production of premium quality billets



## Acknowledgement

The authors are very grateful to Wagstaff billet refractory research team members for their support and discussions.

