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Abstract 
The presence of non-metallic inclusions in Aluminium is one of 
the most important factors determining its processibility and the 
quality of finished products. The concentration of such inclusions 
in the liquid metal has been observed to vary greatly. To better 
understand the contribution of furnace processes to melt quality, a 
mathematical model of casting furnace processes has been 
developed at RDB, Bonn, Germany. The model is capable of 
simulating the most important fluid flow and particle (inclusion) 
transport phenomena occurring in the furnace during both settling 
and casting operations. Output from the model is compared with 
results from standard inclusion measurement techniques (LiMCA 
and PoDFA) for different furnace geometries. The model is a 
powerful tool to improve understanding of these processes and is 
helpful in explaining observations in the cast house. 
 

Introduction 
Process optimization plays an increasingly important role in 
maintaining competitiveness within the cast house. Optimization 
of furnace operations is central to an improved cost position in 
many cast houses. Critical evaluation of design aspects of the 
furnaces can also yield valuable information related to their cost 
effective operation. One aspect that can become neglected due to 
the continuous focus on cost minimization is the quality of the 
metal that is produced in a particular furnace. 
 
Furnace operations in combination with appropriate in-line 
refinement steps (degassing, filtration, etc.) determine the quality 
of the cast products and to a large extent their suitability for 
downstream processing and application. A good understanding of 
the effect of the furnace operations is important to control costs 
but is equally important to ensure the quality of the products 
produced is sufficient for the demands of downstream processing 
and end user applications.  
 
A study of the influence of furnace design and operation has been 
conducted with the assistance of computer modeling of the 
important physical processes to develop an understanding of the 
behaviour of un-dissolved inclusions in the furnace during charge 
preparation and casting. The discussion here will be limited to 
initial results of the simulation work describing the behaviour of 
particles in the melt during tilting of the furnace. 
 

Physical Data 
Particles 
A general description of the type, physical form, size and amount 
of non metallic, un-dissolved inclusions present in a melting or 
holding furnace was based on several measurement campaigns in 
different furnaces using both LiMCA and PoDFA techniques. 
Typical inclusions and their physical properties are given in Table 
1. The general form of the particle size distribution is shown in 
Figure 1 for both stirred and quiescent melts. Surprisingly the 
relative proportion of the various particle sizes appeared to be 

independent of the amount of movement within the bath: 
quiescent or turbulent conditions in the melt. 
 

Table 1. Typical inclusions and their physical properties 

Type of Inclusion: Density 
(kg/m³) 

Size 
(µm) 

Appearance/Form 

  min-max  
Chloride Inclusions 2000 1-20 Circular 
Aluminium Carbide 2360 1-10 Square 
Alpha-Al2O3 3970 10-100 Variable 
Oxide Films 3700 1-50 Stringers  
Magnesium Oxide 3800 1-300 Equiaxed/clusters 
Al- Mg Spinel Oxide 3600 1-50 Films 
Iron Oxide 5750 10-200 Irregular 
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Figure 1. Typical particle size distribution in commercial purity 
Aluminium melting and holding furnaces. 

Furnace Geometry 
The furnace geometry used in these simulations is shown in 
Figure 2. This geometry was chosen as the tilt axis is somewhat 
unusual in that the furnace tilts around the short axis of the 
furnace. As a result the floor of the furnace is exposed to the 
atmosphere due to being lifted above the furnace spout at a 
relatively low tilt angle. Progressively more of the floor is then 
exposed as the furnace continues to tilt. An effective simulation 
should be able to describe the influences of furnace geometry and 
motion on particle movement within the melt. The capacity of this 
furnace is approximately 45 metric tons. 
 

Numerical Model 
To study particle transport in furnaces a simplified numerical 
model was constructed. The model is based on the commercial 
CFD software Flow3D. As a first approximation the redistribution 
of particles by the interaction of density differences and general 
flow patterns induced by the pouring process was considered. At 
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this stage of the model development, some relevant physical 
phenomena such as thermal buoyancy, mechanical impact of 
burner flame and particle agglomeration and loss to the furnace 
walls were neglected. These factors will be progressively 
integrated into the model in future work. Currently, the model 
considers the melt as isothermal and describes only flow patterns 
induced by the tilting motion of the furnace and the draining of 
the vessel. 
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Figure 2. Furnace geometry used in current study 

The model takes advantage of the so called “General Moving 
Obstacle” method [1], to describe the tilting of the furnace in 
space. In this description, geometric entities are rotated through a 
fixed numerical grid. Compared to methods with a rotating force 
vector this approach has two main advantages: It can be easily 
combined with a non-rotating launder while maintaining 
alignment the grid with the upper melt surface. To reduce 
calculation time, the free melt surface on top of the melt was 
approximated by a rigid wall with a slip condition. Numerically, 
this constrains the melt motion avoiding the occurrence of time 
step limitations due to surface waves. In the simulation the 
furnace rotation is controlled by a function for the angular 
velocity to achieve an essentially constant flow rate at the furnace 
exit.  
 
The particles in the melt are described by discrete Lagrangian 
points, which are tracked throughout the calculation. The particles 
are not considered to interact with each other. Since the absolute 
particle concentration is very small, this restriction should have no 
serious consequences.  Compared to scalar inclusion 
concentration the discrete approach has advantages in terms of 
reduced computational costs. Even on a coarse grid comparatively 
detailed information of the particle motion can be achieved.  
Enrichment of particles can be observed even in fractions of a 
computational cell. In principle, it is very easy to consider a size 
distribution of the particles, as an increase in the number of 
equations considered is not required. To model the particle motion 
in the 45t furnace under consideration about 150000 Lagrangian 
particles were used in the simulation. This produced a reasonable 
statistical distribution of particles at the furnace exit. 
 
A limitation in the code is that either the particle sizes or the 
particle densities can be varied in one calculation but not both 
simultaneously. Therefore, several calculations were performed in 
order to evaluate the experimental matrix of Table 2. Usually 4 
classes of different particle diameters or particle densities were 
considered in each simulation. Thus a range of virtual densities 

from particles with attached bubbles to dense aluminium oxide 
inclusions in the range 25 – 55µm was covered. 

Table 2. Experimental matrix evaluated in this study 

Physical properties of simulated particles 
Size Density 
25µm 700 kg/m3 1800 kg/m3 2900 kg/m3 4000 kg/m3 
35µm 700 kg/m3 1800 kg/m3 2900 kg/m3 4000 kg/m3 
45µm 700 kg/m3 1800 kg/m3 2900 kg/m3 4000 kg/m3 
55µm 700 kg/m3 1800 kg/m3 2900 kg/m3 4000 kg/m3 
 
Most of the calculations for this study were performed on a grid 
consisting of either about 15 or 60 thousand active cells. An 
assessment of the sensitivity of the results to the size of the 
computational grid used was made by expanding the grid to ca. 
150 thousand cells and comparing the results of identical 
simulations the three different sized grids as and shown in Figure 
9. A calculation with a cell number of 15000 and 150000 particles 
took about 5.5 hours of CPU time on an Intel Xeon 5160 
processor (3GHz). 
 
The simulation results were analysed using the following two 
methods: 

1. A monitoring plane across the furnace exit as shown in 
Figure 2 was used to count the particles within the four 
classes exiting the furnace. From this integral particle 
number the particle fluxes (counts per time) were 
computed and finally normalized with the volume flow 
rate to achieve the particle concentration at the furnace 
spout. 

2. The spatial distribution and motion of particles were 
analysed using video animations of furnace tilting to 
visualise the main patterns of particle motion. 

 
Industrial Reference 

Typical LiMCA curves which may be expected depending on the 
length of time previously available for particle settling, the overall 
level of inclusions in the melt and the degree to which the furnace 
is emptied during casting are given in Figure 3 and Figure 4 as 
references for the comparison with the simulation results. Similar 
LiMCA results have been previously reported [2-3]. 
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Figure 3. Typical LiMCA curve showing inclusion concentration 
in the metal at the furnace exit during casting. Note the decreasing 
numbers of inclusions due to settling behaviour of particles with 
time 
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Figure 4. Typical LiMCA curve showing inclusion concentration 
in the metal at the furnace exit during casting. Note the increasing 
number of inclusions towards the end of the cast as the inclusion 
rich liquid is expelled from the furnace 

Of interest in this initial development of the model was the degree 
to which the simulation could reproduce these types of curves, 
which are typically observed in industrial operations. 
 
 

Results 
The presentation and discussion of the results will be limited to 
the simulations shown in Table 3 and the effect of grid size on the 
simulation output. 

Table 3. Parameter settings for the various simulations included in 
the current study 

Case 
No. 

Computing 
Parameter 

Fixed 
Parameter Variable Parameter 

1 60k cells 
150k 
particles 

Particle size 
(25µm) 

700 1800 2900 4000 kg/m3 

2 60k cells 
150k 
particles 

Particle size 
(55µm) 

700 
 

1800 
 

2900 4000 kg/m3 

3 15k cells 
150k 
particles 

Particle 
density  
(700 kg/m3) 

25 35 45 55 µm 

4 15k cells 
150k 
particles 

Particle 
density  
(4000 kg/m3) 

25 
 

35 45 55 µm 

5 15k cells 
150k 
particles 

Particle size 
(55µm) 

700 1800 2900 4000 kg/m3 

6 150k cells 
150k 
particles 

Particle size 
(55µm) 

700 1800 2900 4000 kg/m3 

 

Case 3: Particle Concentration at Furnace Exit, 
Particle Density=700 kg/m^3
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Case 4: Particle Concentration at Furnace Exit, 
Particle Density=4000 kg/m^3
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Figure 5. Effect of particle size for (a) 700 kg/m3 (b) 4000 kg/m3. 
At low densities, the particle size does not play an important role 
in determining particle movement patterns but becomes 
increasingly important at higher densities. 

Case 1: Particle Concentration at Furnace Exit, Particle Size: 25µm
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Case 2: Particle Concentration at Exit, Particle Size: 55µm
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Figure 6. Effect of particle density on particle behaviour of 2 
different sized particles (a) 25µm and (b) 55µm 

 
Discussion 

Figure 5 shows the different behaviour patterns of particles of 
different sizes. These results are presented for particles of two 
densities (a) 700 kg/m3 and (b) 4000 kg/m3. At low particle 
densities, the particle size (in the range considered) does not play 
an important role in determining particle movement patterns while 
at higher densities, the effect of particle size becomes increasingly 
important. 
 
Figure 6 (a) und (b) show the variation in the concentration with 
time of particles passing the monitoring plane at the furnace exit 
for a constant flow rate (flux) of metal out of the furnace. A 
progressive segregation of particles due to density differences can 
be seen for both the 25µm and 55µm particles although this effect 
is more pronounced for the larger particles. A peak in particle flux 
for the less dense particles can then be seen in the time period 
3000 to 4000 seconds in both Figure 6 (a) and (b). The emptying 
of the furnace and the particle movement patterns will be 
discussed with reference to the video capture images shown in 
Figure 7, which describe the results of Case 2 shown in Figure 
6(b). Furnace geometry and distribution of particles within the 
stationary furnace at the commencement of the simulation is 
shown in Figure 7(a). Initially metal from the forward areas of the 
furnace flows out of the pouring spout with a relatively constant 
level of inclusions. Larger particles and more dense particles settle 
to the lower regions in the furnace and their numbers at the 
furnace spout decrease (Figure 7(b)).  
 

 
(a) Start of simulation 0 seconds 

 
(b) 1000 seconds elapsed 

 
(c) 3000 seconds elapsed 

 
(d) 3800 seconds elapsed 
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(e) 5000 seconds elapsed 

 
(f) End of casting simulation, 5400 seconds elapsed 
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(g) Schematic diagram of particle accumulation zones resulting 
from the general fluid flow pattern. 

Figure 7. 3-D Visualisation of casting simulation 

 
The peak in particle flux for the less dense particles mentioned 
above can be explained in terms of particle settling behaviour and 
the contribution of the furnace geometry to the flow patterns 
within the melt during tilting of the furnace. The progressive 
exposure of the furnace bottom to the atmosphere due to the 
tilting of the furnace continuously brings metal from the bottom of 
the furnace to the surface of the melt at the rear of the furnace. 
This material is enriched in denser particles and contains 
relatively few particles of low density. It flows along the surface 
of the melt towards the furnace spout with a high local velocity 

accelerating the metal ahead of it, which is rich in inclusions of 
low density. Velocity vectors at 3000 seconds for this simulation 
are shown in Figure 8. The red zone at the melt surface shows the 
area of accelerated melt flow. The surface region in the middle of 
the furnace thus becomes enriched in low density particles (Figure 
7(c) and Figure 8). At some point this material too flows out of 
the furnace and a peak in the numbers of low density particles is 
observed at the monitoring plane (at about 3800 seconds in this 
case Figure 7(d)). Only very few high density particles are 
detected at the furnace exit at his time as they have had sufficient 
time to sink to the bottom of the furnace again. The remaining 
metal in the furnace is either that which has been brought to the 
surface with progressive tilting of the furnace and that, which has 
remained on the floor in the deepest areas of the furnace. This 
metal is enriched in high density inclusions and depleted of low 
density inclusions. Towards the end of the cast the remaining 
metal is expelled from the furnace and a peak in high density 
particles at the furnace exit is detected Figure 7(e). It is thus 
possible to identify zones where less dense and denser particles 
would tend to accumulate (Figure 7(g)). 
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Figure 8. (a) Velocity vectors at 3000 seconds for Case 2 in the 
central plane of the furnace showing high flow rates on the 
surface of the melt. (b) Schematic diagram showing concentration 
effect of low density particles due to fluid flow on the surface of 
the melt. The driving force for this velocity maximum on the melt 
surface is the emerging bottom wall. These results are also shown 
also in Figure 6(a) and Figure 7. 

Several checks were made for internal consistency of the model. 
Some parameter values were repeated in the various simulations. 
For example 25µm particles of density 700kg/m3 are included in 
simulation one and three and 55µm particles of density 4000kg/m3 
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are included in simulations two and four of Table 2. Therefore the 
curves for these particles should be the same in Figure 6(a) and 
Figure 5(a) and Figure 6(b) and Figure 5(b) respectively. As can 
be seen in the figures the agreement is quite reasonable. The 
results do show a dependency on the grid size. This can be easily 
seen in Figure 9. Here the simulation using identical parameters 
has been repeated for three different grid sizes of approximately 
15k, 60k and 150k cells (cases 2, 5 and 6 respectively). For 
practical purposes the intermediate mesh size appears to be 
sufficient. It provides sufficient resolution and improved stability 
over the large mesh size while requiring significantly less 
processor time than the finest mesh (36 hours processing time 
compared to 60 hours). 

Case 5: Particle Concentration at Furnace Exit, Particle Size: 55µm
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Case 2: Particle Concentration at Exit, Particle Size: 55µm
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Case 6: Particle Concentration at Furnace Exit, Particle Size:55µm 
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Figure 9. Effect of computational grid size on simulation output. 
 
 

Conclusions 
A model has been developed to simulate the fluid flow 
phenomena and behaviour of suspended particles in an aluminium 
melting or holding furnace. This model was used to evaluate fluid 
flow and particle segregations during tilting and emptying of a 
furnace. The important behavioural characteristics dictated by the 
relevant physical laws governing buoyancy and fluid flow, etc. are 
reproduced by the model. The numerical model showed 
characteristic particle segregations, which did not result from 
gravity effects alone, but were also the result of the flow patterns 
induced by the tilting and draining of the furnace. 
 
• A progressive segregation of particles due to density and size 

differences was identified.  
o Particle classes with densities greater than that of the 

melt sank to the bottom of the furnace and particle 
classes with a lower density migrated to the surface of 
the melt. 

o For the lowest particle densities (700kg/m3 and 1800 
kg/m3) particle size was not a significant factor 
influencing particle migration patterns.  

o Particle size appears to be more significant for particles 
with densities greater than that of the melt. As expected, 
the large particles (55µm) showed the strongest 
segregation patterns and deviations from the average 
concentration in the furnace spout. 

• The furnace geometry could be shown to have a significant 
influence on the fluid flow and particle distribution patterns: 
o The flow pattern is mainly influenced by the shape and 

tilt axis position of the furnace. This determines where 
particles will accumulate in the furnace and when these 
enriched or depleted volumes will exit the furnace. 

o Peaks and troughs in the numbers of the various classes 
of particles were detected at the furnace exit at various 
times in the simulation as a result of settling and furnace 
geometry effects. This resulted in lighter particles being 
washed out of the furnace more quickly than the heavier 
particles. 

 
It is planned to progressively refine the model to include such 
important aspects as: 
• Gas burner impact 
• Thermal convection 
• Sedimentation 
• Particle interaction with furnace walls 
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