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Abstract

This research investigates the effects that geometry and control have on the

absorption characteristics of active wavemakers and looks at the feasibility of

modelling these wavemakers in commercial computational fluid dynamic soft-

ware. This thesis presents the hydrodynamic coefficients for four different types

of wavemakers. The absorption characteristics of these wavemakers are analysed

using different combinations of control impedance coefficients. The effect of com-

bining both geometry and control is then investigated. Results, quantifying the

absorption characteristics are then presented. It is shown that the amount of

absorption for a given paddle differs greatly depending on the choice of control

coefficients used to implement complex conjugate control. Increased absorption

can be achieved over a broader bandwidth of frequencies when the geometry of

the wavemaker is optimised for one specific frequency and the control impedance

is optimised for an alternate frequency.

In conjunction to this theoretical study, a numerical investigation is conducted in

order to verify and validate two commercial computational fluid dynamic codes’

suitability to model the previously discussed absorbing wavemakers. ANSYS CFX

and FLOW3D are used to model a physical wavemaker. Both are rigorously ver-

ified for discretisation errors and CFX is validated against linear wavemaker the-

ory. Results show good agreement and prediction of the free surface close to the

oscillating wavemaker, but problems with wave height attenuation and excessive

run times were encountered.
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Chapter 1

Introduction

“Our Problems are man made, therefore they can be solved by

man. Man can be as big as he wants. No problem of human

destiny is beyond human beings.”

J.F. Kennedy

The world today is a very different one to that of Kennedy but, there are still real

problems facing society. The spectre of global warming and its dire consequences

for future generations is looming large on the horizon. It is only recently that

man has been big enough to admit his mistakes. The Intergovernmental Panel

on Climate Change has stated that global warming is in all probability a man

made problem (Pachauri and Reisinger, 2007). Concluding that most of the ob-

served increase in globally averaged temperatures since the beginning of the 20th

century is likely due to the observed increase in anthropogenic greenhouse gas

concentrations. Some might not share Kennedy’s faith in man’s ability, reason

and judgement, but for future generations’ sakes, I hope man is strong enough

and smart enough to correct his mistakes.

Publications highlighting the potential cost of inaction against global warming

(Stern, 2006) have added impetus to the debate on low carbon energy produc-

tion. As a result the European Union (EU) has put in place a renewable energy

directive in order to reduce carbon dioxide emissions from electricity production,

increase energy security within the EU and reduce members exposure to oil price

fluctuations.

The EU directive requires member countries to produce a pre-agreed proportion

of energy consumption from renewable sources such that the EU as a whole

shall obtain at least 20% of total energy from renewables by 2020 (European

Union, 2009). Local governments have even set more ambitious targets; Scotland

1



1. Introduction 2

aims to meet 80% of its energy needs via renewable energy sources by 2020. The

prognosis for renewable energy is positive, and a recent publication has shown that

renewable energy production has nearly doubled in the period between 1999 and

2009 (Eurostat, 2011), with an increasing upward trend. Traditionally, renewable

energy sources consisted of biomass, hydropower, geothermal energy, wind and

solar energy. One major renewable energy resource that has not yet been tapped

into is wave energy.

The wave energy resource approaching Western Europe’s coastline is considerable.

Studies have shown that wave energy fluxes of up to 50-70kW per meter of wave-

front approach from the Atlantic Ocean (Mollison et al., 1976), with the British

Isles receiving more than anywhere else in Europe. This is an immense resource

that is lying on our door step. It could potentially replace large proportions of

electricity produced by carbon dioxide emitting coal fired power plants. Security of

supply is guaranteed and the price of energy will not be be subject to the vagaries

of other nations foreign policies. Understandably, EU members are now starting

to investigate whether or not wave power will be able to make a meaningful

contribution to the renewable energy mix. The energy potential is huge, but

building, operating and maintaining man-made structures at sea is not a trivial

matter. In order to address some of these concerns and problems, many researchers

have begun looking at the problems facing the industry and putting forward their

solutions.

Research on wave energy dates back far longer than many realise, with the first

patent in 1799 (Cruz, 2008) however, most recognise the seminal paper by Salter

et al. (1976) as the instigator for current research on the topic. This publication

was at the height of the 1970s oil crisis and it highlighted the opportunity of

boundless energy production for nations with an Atlantic facing coastline. For a

number of different reasons the early research in wave power did not culminate in

any significant full scale devices. This was primarily due to the UK governments

decision to pursue large scale centralised generation rated around 2GW but also

as a result of wrongly pricing the cost of wave energy (House of Lords, 1988).

Since the mid-1990s there has been a resurgence of interest in wave energy, start-

ing with small scale on-shore oscillating water column devices and progressing to

the present day, with several companies testing full-scale devices at the European

Marine Energy Centre (EMEC) and elsewhere. The range of different types of

wave energy converter is extremely broad, at the time of writing EMEC have
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registered over 120 wave power developers, each using a different technology and

methods to harness the energy in the waves. The plethora of different devices and

technologies is encouraging for the wave energy sector, but it also means that it

is more difficult to categorise and assess which devices offer the best solution for

harvesting wave energy.

There are two criteria by which all wave energy converters are judged and evalu-

ated. The first is survivability. This is binary, pass or fail. If the device does not

survive in extreme waves it should not be considered for production. The other

is performance. This process will guide the economics of the business case and

determine whether a device is worth manufacturing and deploying.

All of the aforementioned technologies will be designed and evaluated using a

combination of theory, experiment and numerical modelling before progressing

towards full scale production. The realm of theory can be limited due to simplified

assumptions in the physics, needed in order to allow for calculation. Experimental

modelling is excellent at providing the characteristic response of the device in real

water waves but, these facilities are expensive to run and depending on the scale

to be tested, only limited information can be obtained.

Experimental wave tanks also suffer from wave reflections from the solid wall

boundaries spoiling the test domain. These reflections also limit the test duration

due to a build up of spurious waves. Of the many proposed solutions to deal with

these unwanted waves is the use of active absorption in the wavemakers. This

is where the wavemakers react to waves impinging upon their surface and move

in a manner that absorbs the incoming wave. This is a important research topic

and improvements in reflection absorption could be made by borrowing from the

advancements made in wave energy converter control.

However, numerical modelling has thus far benefited from the unrelenting adher-

ence of CPU processing power to Moore’s law (Moore, 1965). This has resulted in

numerical modelling becoming an ever more important tool for the design of wave

energy devices. Numerical modelling has allowed designers to obtain diagnostic

reports of their designs and arrive at technology readiness levels (Holmes and

Nielsen, 2010) at a fraction of the cost of a wave tank. Until recently however,

the kind of numerical models used in the wave energy industry were limited to

linear waves, where the motions of the devices are small and no wave breaking or

over-topping occurs. This is appropriate for low to medium energy sea states and

allows numerical models to predict performance of a device based upon a given
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resource. But it cannot give any indications of the survivability of the device or

how the device will behave in higher energy sea-states.

Significant progress has been made in both computational hardware and numer-

ical modelling methods to offer engineers the possibility of using numerical mod-

els that do not make simplistic assumptions about the flow-field. These solvers

are refereed to as Navier-Stokes solvers or computational fluid dynamic codes.

It is being proposed that these Navier-Stokes solvers could offer the possibility

of being used as a ‘numerical wave tank’, solving for viscosity and accounting

for wave breaking and air-entrainment. The incorporation of free surface models

into commercial computational fluid dynamic software has made this option more

accessible to industrial developers, who make use of these off the shelf codes.

Numerical wave tanks also suffer from unwanted wave reflections, similar to ex-

perimental wave tanks. There are specific numerical methods for absorbing these

waves in a numerical wave tank and some numerical absorption techniques borrow

methods used in experimental wave tanks. Combining both types of absorption

methods has proved beneficial (Clément, 1996) and could be improved upon with

further study, especially if combined with new wave energy control absorption

methods. On top of this, unexplored absorption using new geometric wavemaker

profiles could also increase the absorption in these numerical models.

These numerical models are powerful tools, but there is always a danger of users

having over confidence in their numerical output. There is all too often a tendency,

on the user’s behalf, to take the given results for granted without treating them

with a healthy does of scepticism and analysing them thoroughly. This can be

coupled with unrealistic user expectations. Only if a numerical code has undergone

a thorough verification and validation can the end user declare his confidence in

the results. With the increasing usage of computational fluid dynamic software,

in particular commercial codes by industrial users, there is a need to examine

how capable these codes are at accurately predicting the free surface flow field in

and around a radiating body.

This thesis describes two of the aforementioned realms, theory and numerical

modelling of oscillating bodies in water waves, hoping to achieve physical and

numerical convergence between the two. The current literature in both hydrody-

namics of wavemakers and numerical generation of waves will be presented and

discussed. Then, it hopes to develop the hydrodynamic theory behind absorbing

wavemakers and analyse the effects that different control strategies have on levels
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of absorption. It is envisaged that this theory of absorbing wavemakers will be

incorporated into a commercial Navier-Stokes numerical code. Upon successful

verification and validation, this code will then be used to model wave generation

and absorption by the wavemakers in a two dimensional flume. Then the pos-

sibility of using this numerical model to create a three dimensional analogue to

the University of Edinburgh curved tank will be investigated. This is not a trivial

task, but if this is achieved, it will be a truly useful design tool for industry and

academia.



Chapter 2

Literature review

There are two areas of research that are relevant to the the work being presented

in this thesis: research on physical wavemakers and research on numerical wave

makers. The literature reporting on the generation of waves using physical wave-

makers will be reviewed first, where literature behind wavemaker theory will be

discussed. Following on from this, absorption techniques used in physical wave

tanks will be presented and will be expanded to report on active absorption meth-

ods used for absorbing wavemakers. Then publications regarding numerical wave

tanks will be presented and the different methods used to generate waves in a

numerical code will be discussed. Finally, the research into numerical absorption

of waves will be presented.

2.1 Experimental wave tanks

Engineers use wave tank facilities to assess the design, safety and economic fea-

sibility of ships, coastal structures and wave energy devices. Wavemakers are

a central component to such facilities and a general theory for the generation of

waves by oscillating solid boundaries was first presented by Havelock (1929). This

research was further developed by many subsequent studies (Biesel and Suquet,

1951; Galvin Jr, 1964; Gilbert et al., 1971; Bullock and Murton, 1989; Dean and

Dalrymple, 1991; Hughes, 1993; Falnes, 2002; Newman, 2008) into the well es-

tablished wavemaker theory. This theory describes the generation of propagating

waves using an oscillating solid boundary. Subsequently, the theory has been used

to describe the radiated waves for a variety of different types of wavemakers such

as: pistons, bottom hinged flaps, wedge wavemakers, plunger wavemakers and it

has also been used to predict the profile of wavemakers that would have no local,

evanescent waves (Naito and Minoura, 1994; Falnes, 2002; Maguire and Ingram,

6
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2011). Wavemaker theory has been validated experimentally using laboratory

measurements comparing the stroke displacement of the wavemaker to the far

field wave height, showing excellent agreement for small amplitude waves (Ursell

et al., 1960). This theory been expanded further into second-order wave maker

theory by several authors (Sulisz and Hudspeth, 1993; Schäffer, 1996; Spinneken

and Swan, 2009a). Linear wave theory will be used throughout this thesis as the

basis for any wave tank discussions.

Experimental wave tanks (EWT) provide an excellent opportunity for engineers

to assess their designs and analyse its characteristic response in a controlled envi-

ronmental setting. Scaled testing provides an opportunity to explore parametric

studies at less economic expense than at full scale and also the smaller scale

test models allow for handling without cranes. In contrast to the ocean however,

the size of EWT facilities are limited and, as such, the boundaries and walls of

EWTs cause wave reflections which result in an unrealistic representation of the

boundless ocean. This is a major issue in EWTs because, if waves are continu-

ously reflecting off solid boundaries, over a period of time the wave reflections

can build and contaminate the test domain thus shortening the test duration. In

order to mitigate against these wave reflections, many EWTs have incorporated

some form of wave absorption mechanism at the boundaries of the EWT. Wave

absorbers can be broadly classified into two different categories: active and passive

absorption.

2.1.1 Physical wave absorption

Passive wave absorbers try to damp out any impinging waves on solid boundaries

other than the wavemakers and ensure that there are no reflections back into the

test domain. The most common form of passive absorption is a beach with con-

stant slope but: transversal bars, horsehair and wire screens are also commonly

used (Ouellet and Datta, 1986). In order to achieve good levels of absorption,

the slope of the beach must be mild (typically ≤ 1 : 10). This constraint puts

pressure on size of the EWT as having a beach with a mild slope would consume

a large proportion of the test domain or require a very large facility. Also, pas-

sive absorption does not account for any waves reflecting from the test device

back to the wavemaker. These reflections can be significant, especially in coastal

engineering applications.

The other option is to use a dynamic system to actively absorb incoming waves,
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commonly referred to as; active absorption, absorbing wavemakers or reflection

compensation systems. These wavemakers make some hydrodynamic measure-

ment and move the wavemaker in such a manner that absorbs the incoming

wave. In theory, it is possible to absorb regular waves perfectly by tuning the

active system over a range of frequencies using active control. Several different

techniques have been put into practice to achieve optimal control of wavemaking

devices, the main difference is the choice of which quantity to measure and the

location of the measurement.

One method employed to absorb incoming waves uses the free surface elevations

measured directly on the wavemaker (Bullock and Murton, 1989; Schäffer et al.,

1994; Ito et al., 1996; Nohara, 1998; Liu et al., 2003). The advantage of mount-

ing the wave sensors on the wavemaker is that they take measurements using a

Lagrangian frame of reference. Lagrangian dynamics are reportedly more linear

than and Eulerian reference frame, extending the range of validity of linear wave

theory (Woltering and Karl-Friedrich, 1994). The evanescent wave is a standing

wave that decays with distance from the wavemaker. If the elevation is measured

on the wavemaker front, the evanescent wave needs to be accounted for and this

can complicate the procedure.

Another similar approach is to mount the wave gauges at some distance ahead

of the wavemaker (Milgram, 1970; Christensen and Frigaard, 1994; Frigaard and

Brorsen, 1995; Nanri et al., 2002). Several surface displacement measurements are

taken and then the incoming wave field is separated from the desired wave field.

The wavemaker is then moved in a manner that cancels out the incoming waves.

This system has the advantage of having time to process the measurement before

the wave arrives at the wavemaker, allowing for a more stable system. But, this

extra distance can allow for errors in wave phase between the incoming wave and

absorption signal to be introduced, and can lead to sub-optimal performance and

stability issues (Schäffer and Klopman, 2000).

A different active absorption method uses force as the hydrodynamic feedback

mechanism. Salter (1981) cites three advantages to this method. Force is an inte-

gral quantity measured over the entire wave maker front and using this measure-

ment minimises any slight errors encountered with single point measurements.

Force sensors can be entirely free from the chemical and biological vagaries of

tank water. Most types of tank probes use either resistive gauges or capacitance

gauges. Both of these are susceptible to corrosion, biological growths, oil and dust
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residues, all of which require frequent recalibration which is unacceptable for a

large array of wave makers. Finally, Salter cites the conservation of energy as

another reason to choose force feedback. He states that the advantage of using a

force measurement is its ease of combining it with a velocity measurement and

therefore fixing the rate of energy given to the water. He argues that it is “better

to provide the right amount of energy at each frequency than to try to enforce

a sinusoidal form that the waves do not like”. Thus, controlling energy bypasses

many of the non-linearity problems that arise when generating steep waves.

The method of using Force as the hydrodynamic measurement has been studied

by several authors, and is used as the active absorption method by one a promi-

nent wavemaker designer, Edinburgh Designs. Maisondieu and Clément (1993)

published their results on a force feedback feedforward control loop for a piston

wave absorber. The problem considered was the absorption of water waves by

the horizontal motions of a vertical plane in response to the hydrodynamic forces

it experiences. Due to the lack of causality (Naito and Nakamura, 1985), opti-

mal absorption cannot be achieved in polychromatic waves. In order to address

this, a self adaptive control system for a piston wave absorber has been proposed

where an adaptive tuning system is implemented to match the incident wave fre-

quency (Chatry et al., 1998). Further analysis on the simultaneous generation and

absorption using force-controlled wavemakers (Spinneken and Swan, 2009b) and

a theoretical transfer function for force-controlled wave makers (Spinneken and

Swan, 2010) have also been published. Naito (2006) described the theory behind

the generation of waves using a plunger wavemaker incorporating a force feedback

absorption. The absorption force was implemented using a two coefficient control

system; one coefficient proportional to velocity the other proportional to displace-

ment. This form of absorption is analogous to the power take off mechanism used

in wave energy converters.

The theory behind the extraction of energy by wave energy converters has been

presented several times in the literature and is extensively reviewed by Falnes

(2007). It has been shown that optimal control of wave energy, at a specific

frequency, can be achieved using reactive control methods (Mei, 1976; Evans,

1981; Nebel, 1992). This can also be referred to as impedance matching or complex

conjugate control (Salter et al., 1976). This form of control aims to ensure that

the control force is in phase with the excitation force via an imaginary component

in the control algorithm. Reactive control can be implemented using a number of
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control coefficients, but the majority of absorbing wavemakers and wave energy

devices implement the impedance matching using just one real coefficient and

one imaginary coefficient, either a mass term (Mei, 1976) or, more commonly, a

spring term (Evans, 1981). A recent study has shown both of these methods do

obtain optimal results at that specified control frequency, but the characteristic

absorption absorption levels differ greatly at frequencies other than the specified

control frequency (Price, 2009).

This thesis will present the first order wavemaker theory in Chapter 3 where

hydrodynamics of conventional wavemakers will be discussed and for the first

time, the hydrodynamic expressions and displacement transfer functions of two

non-conventional wavemakers will also be presented. The wavemaker with no

evanescent waves will be further analysed with respect to its absorption qualities

as opposed to its wavemaking properties. As this wavemaker can obtain zero

added mass at certain frequencies, the geometry can be considered as a control

handle helping to increase the bandwidth of absorption in conjunction with active

absorption techniques.

Chapter 4 investigates the control strategies that can be used with absorbing

wavemakers. Drawing upon the theory of wave energy conversion, special atten-

tion is paid to the difference that control coefficient selection makes on the capture

width and what role the tuning frequency plays. It contrasts the results between

using one, two or three control coefficients in an absorbing wavemaker and also

explores the influence that wavemaker geometry control has on the absorption

characteristics. It looks at absorption levels when both the control system and

the geometry can be optimised separately and concurrently.

2.2 Numerical wave modelling

Experimental wave tanks (EWT) have been, and still are, an indispensable tool

for any engineer working within coastal and ocean engineering. However, they

are expensive facilities in both capital expenditure and operational expenditure

terms. There is only a limited number world wide. Extracting specific data mea-

surements that are both accurate and precise can be troublesome. It can be hard

to manufacture an appropriate scale model that will give a realistic representation

of the full scale device, and, conflicting non-dimensional scaling laws can make

estimation of full scale characteristics difficult.
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Computers are now capable of providing an analogue to the experimental wave

tank: the numerical wave tank (NWT). The NWT can offer large benefits to the

design engineer compared to an experimental facility, mainly through cost and

space saving, but the NWT also has the advantage of being able to provide a vast

array of parametric point measurements all over the test domain. The objectives

of using an NWT can fall into two categories: reproduce physical wave tanks

as closely as possible or to reproduce real sea conditions as closely as possible

(Tanizawa, 2000). For this thesis, the emphasis will be on the reproduction of

physical wave tanks in numerical software. If physical and numerical convergence

between NWTs and EWTs can be achieved, the synergy that this would provide

would result in powerful diagnostic tools for the design engineer.

2.2.1 Numerical wave generation

In order to generate a wave within a NWT there are a number of options available.

The wave generation can either be imitative of physical wave tank generation or

artificially induced.

For physical wave generation, the waves are created as a result of forced oscilla-

tions of a solid boundary. The wavemakers are directly analogous to those used in

physical wave tanks and have been implemented numerically, such as piston-type

wavemakers (Clément and Mas, 1995; Huang et al., 1998; Tanizawa and Naito,

1999; Duclos et al., 2001; Dong and Huang, 2004; Wang et al., 2007), flap-type

wavemakers (Westhuis, 2001; Bonnefoy et al., 2006; Lal and Elangovan, 2008;

Silva et al., 2010), and plunger-type wavemakers (Koo and Kim, 2005). This

type of implementation of a physical wavemaker in an NWT is relatively straight

forward and easy to execute as long at the numerical solver can model moving

boundaries or 6 degree of freedom bodies. It also has the benefit of there being

a well known analytical solution for a propagating wave in a flume (Ursell et al.,

1960).

There are a number of methods that can be employed to implement an artifi-

cial numerical wave generation. One such method is to use space-periodic waves,

where the propagation is imposed via space-periodic boundary conditions on the

tank walls (Kim et al., 1999). This method is limited in application due to the

requirement of periodicity.

Another method is to impose a velocity condition on the inflow boundary (Park,



2.2. Numerical wave modelling 12

2004; Westphalen et al., 2008, 2009). The velocity potential can be obtained

from linear wave theory or a higher-order stokes waves and used to generate a

propagating wave. The advantage of using this technique is that there will be

no local evanescent wave present. This method can be a little more difficult to

implement and some problems with extra mass entering the numerical domain

are possible.

Chapter 6 concentrates upon the generation of waves in a NWT using physically

realisable methods and does not explore the method of numerical wave generation.

This is in order to allow for validation against linear wave theory and also to allow

for analysis of physical and numerical convergence.

2.2.2 Numerical wave absorption

Similar to EWTs, NWTs suffer from wave reflections rebounding off the numerical

boundaries of the tank and spoiling the test domain. NWTs offer a number of

different solutions to absorb unwanted wave reflections, some methods analogous

to those used in EWTs and others employ purely numerical solution to deal with

the unwanted waves.

One of the simplest methods used to numerically absorb waves is via the imple-

mentation of a periodic boundary condition (Longuet-Higgins and Cokelet, 1976).

Here the solution is assumed to be periodic in space and the values both verti-

cal boundaries but, as mentioned earlier, this method has limitations due to the

periodicity.

Another method commonly used in NWTs is the application of artificial damping

to the free surface or the dynamic and kinematic conditions in order to damp out

wave propagation, often also referred to as sponge layers (Romate, 1992; Israeli

and Orszag, 1981). For this method, a specific region within the test domain is

designated as the damping zone. Waves pass through this region, lose energy,

reflect off the boundary and again are subjected to energy loss. Sponge layers

have been shown to be very effective at absorbing high-frequency waves but,

these methods do not perform as well for low-frequency waves (Clément, 1996).

There are several other numerical techniques used to absorb outgoing waves such

as: simple far field solutions, differential equations matching the outer solution and

Sommerfeld-Orlanski conditions. These methods require that either knowledge of

the wave frequency is known a priori or, the waves need to be monochromatic. As
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this thesis is investigating the physical and numerical generation and absorption

of waves, these non-physical absorption methods will not be explored further,

reviews by Givoli (1991); Romate (1992); Grilli and Horrillo (1997) cover the

topics of absorption by numerical techniques in more detail.

Clément (1996) proposed combining a sponge layer which has good absorption

characteristics for high-frequency waves with an absorbing piston, that has good

low-frequency absorption characteristics. The Absorbing piston boundary con-

dition in analogous to the physical methods of absorption discussed previously.

The piston will move in a manner that cancels out the reflected wave based upon

the wave force measured on its surface. The combination of both of these meth-

ods provides better absorption characteristics across a broader range of spectral

bandwidth than using either in isolation.

The piston geometry used by Clément (1996) has good absorption qualities for

low-frequency waves in shallow waters but a bottom hinged flap would be more

suited to intermediate and deep-water waves. Chapter 4 will quantify the levels

of absorption for both a piston and a bottom hinged flap and also explore us-

ing a hyperbolic cosine wavemaker to achieve optimal absorption for a specific

wavenumber. Further to this investigation into the effect of geometry on absorp-

tion, the influence of control strategy will also be investigated. The results of

both studies could more readily be applied to absorption of waves in NWTs than

EWTs. These absorption methods of geometry control and improved reactive con-

trol could then be used in conjunction with a damping sponge-layer similar to the

method proposed by Clément (1996), but with better absorption characteristics

than using a piston.

2.2.3 Numerical wave models

There are a multitude of numerical wave models available to be used. Numerical

wave models can be classified according to a number of categories based upon

what kinds of problems that the models solve.

The most commonly used numerical model for large scale wave motion is the

spectral model. This type of model assumes that the sea state is composed of

an infinite number of waves whose wave heights are a function of frequency and

direction (Pengzhi, 2008). There are a number of different implementations of

this type of model (Hasselmann et al., 1988; Tolman, 2009), which are used for
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large scale oceanographic models and can be coupled with atmospheric models to

predict a global wave climate. Shallow water approximations can be applied to

approximate wave-current interaction in the large-scale near shore environment

and can be used to estimate local wave energy flux and gradients (Ris et al.,

1999). As these models are in the frequency domain, they are phase-averaged and

the computational grid can be larger than a wavelength. This results in relatively

quick computational times, but the limitations imposed by phase-averaging means

that the diffraction of waves around a body or a time domain solution cannot be

offered by a spectral model.

The Boussinesq equation models are phase resolving and can be used to model

the wave climate near shore and on a smaller spatial scale than the spectral

models (Kirby et al., 1998; Madsen et al., 2006; Zhang et al., 2007). These models

are depth averaged with the dispersion terms partially representing vertical fluid

transport, but they should only seriously be considered for intermediate water

depths (Pengzhi, 2008). These models are quick at representing a time domain

representation of intermediate water depths and, are used for simulation of water

waves in shallow seas and harbours. They are not suitable to calculate wave forces

on a radiating body or for use as a NWT.

Potential flow codes obtain Boundary Integral Equations (BIE) from the Laplace

equations and they are solved numerically using Boundary Element Methods

(BEM) (Tanizawa, 2000). These numerical codes can model non-linear waves in

both shallow and deep waters, accounting for linear wave diffraction on oscillating

bodies and wave force calculations on structures. As they use non-grid numerical

methods they are not as computationally expensive as other grid based methods.

Potential flow codes are used extensively for the hydrodynamic analysis of ships,

oil platforms and wave energy converters as well as being used to model NWTs.

The major drawback with potential flow codes is the assumption of inviscid irro-

tational flow. This means that complex flow around moving structures cannot be

resolved properly, no turbulence or viscous losses can be accounted for and it is

not capable of modelling breaking waves.

In order to model accurately an oscillating body and account for viscous and ro-

tational flow, the Navier-Stokes equations need to be solved. Many Navier-Stokes

solvers are commonly referred to as Computational Fluid Dynamic (CFD) solvers.

The Navier-Stokes equations account for mass, momentum and energy conserva-

tion that allows them to accurately describe many types of fluid flow, including



2.3. Thesis outline 15

water waves. This type of numerical model is highly versatile, allowing for mod-

elling of breaking waves, air entrainment, fluid-structure-interaction, multi-phase

flow to name but a few. The main draw back with using CFD solvers is the com-

putational time. In order to solve a problem using CFD, it would be far more

computationally expensive than any of the other numerical wave methods dis-

cussed earlier. However, with the advent of high speed, multi-core processing the

range of problems that CFD can be used for is expanding. Recent attempts have

been made to use CFD to model a NWT (Huang et al., 1998; Kim et al., 2001;

Apsley and Hu, 2003; Park, 2004; Dong and Huang, 2004; Wang et al., 2007) but

mostly using in-house, bespoke codes. General purpose commercial CFD codes

have advanced significantly in the area of free surface flow modelling and now offer

the possibility to industry to use CFD in the assessment and appraisal of coastal

and ocean engineering applications. Taking into consideration the large benefits

that are to be had through solving the full Navier-Stokes equations for fluid flow,

Chapter 6 will examine two commercial codes for use as a NWT. Herein, a user’s

perspective will be adopted, looking at the wavemaking process in particular and

examining the fidelity of the waves generated in the CFD code.

2.3 Thesis outline

This thesis will analyse the absorption of waves from both a theoretical and nu-

merical perspective. Chapter 3 will look at the hydrodynamics of wavemakers

and use linear wavemaker theory to present analytical hydrodynamic coefficients

for conventional wavemakers and for non-conventional wavemakers with varying

geometries. Chapter 4 presents and quantifies the absorption characteristics as-

sociated with wavemakers under different control schemes. It will then analyse

the benefits of combining different wavemaker geometries with various absorption

control schemes.

Then this thesis will examine the possibility of implementing the aforementioned

theory in a commercial Navier-Stokes solver. Upon review of the literature it

is clear that a rigorous verification and validation is needed to be conducted

on these codes to assess the fidelity of the propagating wave. Chapter 5 will

describe the formal verification process of the numerical codes considered within

this thesis. Chapter 6 presents the results of the verification and validation process

on two commercial Navier-Stokes solvers, conducted from a users perspective,
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concentrating on how well the codes can predict radiating waves from a numerical

wavemaker in a numerical wave tank.



Chapter 3

Theory: gravity waves and

wavemakers

Real water waves are viscous waves, propagating over uneven surfaces of varying

permeability, can be highly non-linear, can be breaking waves with air entrain-

ment and can interact with structures of varying sizes and shapes. Considering

this, it is surprising that linear wave theory which assumes irrotational, inviscid

flow and infinitesimally small waves can be used to predict the behaviour of real

water waves. Remarkably, for large number of situations, water waves can be ac-

curately modelled using potential flow theory. The use of potential flow simplifies

the mathematical analysis and is a powerful tool for the design engineer.

This chapter, which closely follows Falnes (2002, Chap. 4 & 5), will present the

areas of linear wave theory needed to calculate the hydrodynamic coefficients

of wavemakers. The linear wave theory will be used to derive analytical expres-

sions for the added mass and damping of four wavemakers with different shape

profiles. Two of the wavemakers are commonly used in hydrodynamic laborato-

ries and their analytical hydrodynamic expressions are well known. The other two

wavemakers are different as one will generate waves without any evanescent waves

and the other will generate waves without any progressive waves. Their analyt-

ical expressions will be presented and graphed for the first time and a transfer

function relating the far field wave height to the stroke amplitude will also be

presented.

17
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3.1 Boundary Value Problems

If we consider two fundamental fluid dynamic concepts, namely that mass and

momentum are conserved, will lead us to the continuity equation,

∂ρ

∂t
+5 · (ρ~v) = 0, (3.1)

and the Navier-Stokes equation

D~v

Dt
=

1

ρ
∇ptot + ν∇2~v +

1

ρ
~f, (3.2)

where D
Dt

is the material derivative, ~v is the velocity of the fluid element, ρ is the

fluid density, ptot is the the fluid pressure and ν is the kinematic viscosity and
~f is the external force per unit volume, here only gravitational forces ~g will be

considered, ~f = ρ~g.

If it is assumed that the fluid is incompressible, then ρ is constant and the con-

tinuity equation reduces to

∇ · ~v = 0. (3.3)

Considering the fluid to be inviscid and that only a gravitational force exists.

Then Eq. 3.2 can be reduced to

∂~v

∂t
+ ~v · ∇~v =

1

ρ
∇ptot + ~g. (3.4)

Falnes (2002) makes use of the vector identity

~v × (∇× ~v) ≡ 1

2
∇v2 − ~v · ∇~v (3.5)

and takes the curl of Eq. 3.4 to give

∂

∂t
(∇× ~v) = ∇×

(
−1

2
∇v2 + ~v × (∇× ~v)− 1

ρ
∇ptot + ~g

)
. (3.6)

Using the vector identity ∇×∇ϕ ≡ 0 for any scalar function, ϕ, and recognising

that ~g is the gradient of a gravitational potential, gz, thus ∇× ~g = 0, yields

∂

∂t
(∇× ~v) = ∇× [~v × (∇× ~v)]. (3.7)
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Assuming that the fluid flow is irrotational initially, ∇×~v = 0, then the flow will

continue to be irrotational because (∂/∂t)(∇× ~v) = 0 and

∇× ~v ≡ 0. (3.8)

Using the vector identity ∇×∇φ ≡ 0 to give

~v = ∇φ, (3.9)

where, φ is the velocity potential. Inserting this into Eq. 3.4 gives

∇
(
∂φ

∂t
+
v2

2
+
ptot
ρ

+ gz

)
= 0. (3.10)

Using Eq. 3.5 and that ~g = −∇(gz) and integrating gives

∂φ

∂t
+
v2

2
+
ptot
ρ

+ gz = C (3.11)

where, C is the integration constant.

For the static case, when the fluid is not in motion, ~v = 0 and φ is constant, Eq.

3.11 gives

ptot = pstat = −ρgz + ρC. (3.12)

At z = 0, on the free surface, the total pressure, ptot, equals the atmospheric

pressure, patm. This gives a solution to the integration constant, C = patm/ρ and

thus,

pstat = −ρgz + patm (3.13)

and as can be seen, this hydrostatic pressure, pstat, increases linearly with distance

from the free surface.

Due to the conditions that the flow is in-compressible and irrotational, conserva-

tion of mass requires that the Laplace equation

∇2φ = 0 (3.14)

is satisfied throughout the flow field. Solutions to this partial differential equation

must satisfy certain boundary conditions. The most interesting boundary condi-

tions to us are the water-air interface at the free surface, and the water-solid
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interface where fluid encounters a solid impermeable boundary.

If a solid body is moving through the fluid with a velocity ~u then we have

∂φ

∂n
= un (3.15)

where, ~n is the unit normal on the solid boundary. Conversely if the solid surface

is not in motion, then
∂φ

∂n
= 0. (3.16)

A follow on from the solid-body boundary condition, is that on the bottom of the

domain, there is no flow normal to the sea floor, thus giving the bottom boundary

condition,
∂φ

∂z
= 0 at z = −h. (3.17)

The free surface boundary is located at z = η(x, y, t), where η is the displacement

of the free surface about the horizontal plane, z = 0. A defining characteristic of a

free surface is that they cannot support variations in pressure (neglecting surface

tension) and needs to respond to ensure that the pressure remains uniform across

the interface. A dynamic boundary condition is needed to prescribe the pressure

distribution on this boundary. This boundary condition can be obtained from

the Bernoulli Equation (non-stationary), Eq. 3.11, and assuming that the total

pressure equals atmospheric pressure, ptot = patm at z = η, then[
∂φ

∂t
+
v2

2

]
z=η

+ gη = C − patm
ρ
. (3.18)

The integration constant C = patm/ρ, and this results in the right hand side

tending to zero. Making use of Eq. 3.5, the free surface boundary condition can

be represented as

gη +

[
∂φ

∂t
+

1

2
∇φ · ∇φ

]
z=η

= 0. (3.19)

If we assume that the higher order terms are negligible the dynamic boundary

condition can be represented as

gη +

[
∂φ

∂t

]
z=η

= 0. (3.20)

The kinematic free surface boundary condition dictates that a fluid particle on
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the interface remains on the interface and is represented as[
∂2φ

∂t2
+ g

∂φ

∂z

]
z=0

= 0. (3.21)

The velocity potential φ = φ(x, y, z, t) is a mathematical scalar function whose

gradient is equal to the velocity of the fluid, therefore the fluid velocity can be

represented as

~v = ~v(x, y, z, t, ) = ∇φ. (3.22)

The velocity potential also allows us to derive the hydrodynamic pressure from

the dynamic part of Eq. 3.11

p = p(x, y, z, t, ) = −ρ(
∂φ

∂t
+
v2

2
) ≈ −ρ∂φ

∂t
(3.23)

where the second order terms have been neglected.

The free-surface elevation at the water-air interface can now be obtained from

η = η(x, y, z, t) = −1

g

[
∂φ

∂t

]
z=0

(3.24)

3.2 Harmonic Waves

When dealing with waves, it is often useful to work in the frequency domain

rather than the time domain. The frequency domain makes use of linear waves

and the superposition principle. The frequency domain simplifies the system of

equations making them easier to solve, but care should be taken when reverting

back to the time domain. This section will present a solution that satisfies the

Laplace equation assuming a horizontal sea bed and a free surface with constant

pressure at the air-water interface for a body with periodic motions of 2π/ω.

When considering harmonic waves in deep water with sinusoidal time variation,

we can write

φ = φ(x, y, z, t) = <
{
φ̂(x, y, z)eiωt

}
(3.25)

where φ̂ is the complex amplitude of the velocity potential. Similarly the parme-

ters of velocity, pressure and free-surface can be defined using complex amplitudes.
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Now, in terms of complex amplitudes, the equations describing the physical flow

quantities, Eqs. 3.22-3.24, are given as

~̂v = ∇φ̂, (3.26)

p̂ = −iωρφ̂, (3.27)

η̂ = −iω
g

[
φ̂
]
z=0

(3.28)

and the homogeneous boundary conditions that will be used to satisfy the Laplace

equation, state that on the sea bed, z = −h, there is no flow normal to it and

that pressure is constant on the water-air interface, z = 0,[
∂φ̂

∂z

]
z=−h

= 0, (3.29)[
−ω2φ̂+ g

∂φ̂

∂z

]
z=0

= 0. (3.30)

Separation of variables is a method of solving ordinary and partial differential

equations. It allows us to rewrite an equation so that each of two variables occurs

on a different side of the equation. Again, following Falnes (2002) and using this

method, we seek a solution in the form of

φ̂(x, y, z) = H(x, y)Z(z). (3.31)

Substituting into the Laplace Equation, Eq. 3.26, and dividing by φ̂ we have

− 1

Z

d2Z

dz2
=

1

H

[
∂2H

∂x2
+
∂2H

∂y2

]
≡ 1

H
∇2
HH (3.32)

The term on the left hand side depends on z alone, while the right hand side

depends on x and y. If we were to hold the left-hand term, z, the second term

could conceivably vary, thus resulting in a non-zero sum. This is obviously not

possible. The only way that this equation can exist is if each term is equal to the

same constant, say −k2, except for a sign change thus we have

d2Z(z)

dz2
= k2Z(z) (3.33)

∇2
HH(x, y) = −k2H(x, y). (3.34)
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It can be seen that Eq. 3.33 has a solution of the form

Z(z) = c+e
kz + c−e

−kz, (3.35)

where, c+ and c− are integration constants. As we have two new integration

constants when solving the two dimensional Helmholtz Equation, Eq. 3.34, for

H, we may choose Z(0) = 1, giving c+ + c− = 1. Using this and Eq. 3.35 gives

c+e
−kh = (1− c+)ekh, (3.36)

c+ =
ekh

e−kh + ekh
. (3.37)

Similarly, a solution for c− can be obtained as

c− =
e−kh

e−kh + ekh
. (3.38)

It now follows from Eq. 3.35 that

Z(z) =
ek(z+h) − ek(z+h)

ekh + e−kh
=

cosh(kz + kh)

cosh(kh)
= e(kz), (3.39)

thus giving the following particular solution to the Laplace solution:

φ̂ = H(x, y)e(kz) (3.40)

In order to satisfy the homogeneous free-surface boundary condition, Eq. 3.30,

we require

ω2 = ω2e(0) = g

[
de(kz)

dz

]
z=0

= gk
sinh(kh)

cosh(kh)
= gk tanh(kh), (3.41)

where this expression is the well known dispersion equation, describing the manner

in which polychromatic waves separate or disperse due to the different wave speeds

of the various frequency components.

Rearranging this equation, the dispersion relationship can be expressed as

ω2h

g kh
= tanh(kh). (3.42)

It can be easily observed from Figure 3.1 that there is only one real positive
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Figure 3.1: Graphical solution to real part of the dispersion equation showing
the single positive root. Here ω2h/g = 1.

solution, represented by the intersection of the two graphs. There is also a corre-

sponding negative solution with the same absolute value, meaning that there is

only one positive value for the separation constant k2 in Eq. 3.33 and Eq. 3.34.

Therefore we can replace k2 by λn and φ̂(x, y, z) = Z(z)H(x, y) by

φ̂n(x, y, z) = Zn(z)Hn(x, y) (3.43)

and re-write the boundary conditions, Eq. 3.33 and Eq. 3.34 as

Z ′′n(z) = λnZn(z), (3.44)

∇2
HH(x, y) = −λnH(x, y). (3.45)

Here λn is the eigenvalue and Zn is the corresponding eigenfunction and the

subscript n is to label all of the possible solutions for n ≥ 0.

It has been shown that there is only one positive eigenvalue, k2, to the dispersion

equation, Eq. 3.42,

λ = k2 ≡ λ0 (3.46)

and therefore it follows that all other eigenvalues must be negative

λn = −m2
n (3.47)
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Figure 3.2: Graphical solution for the evanescent solutions to the dispersion
equation up to knh = k3h. Again, for this graph ω2h/g = 1

for n ≥ 1.

To obtain the negative eigenvalues, we replace k by −imn in the dispersion equa-

tion to obtain,

ω2 = −imng tanh(−imnh) = −mng tan(mnh). (3.48)

As is seen in Figure 3.2, there are an infinite amount of real positive solutions for

mn and the solutions lie in the interval

(n− 1)
π

h
< mn <

n

h
for n = 1, 2, 3... (3.49)

Thus the set of eigenvalues are

{λ0, λ1, λ2, . . . , λn, . . . } =
{
k2,−m2

1,−m2
2, . . . ,−m2

n, . . .
}
. (3.50)

If the eigenfunctions are normalised such that∫ 0

−h
|Zn(z)|dz = 1, (3.51)

Falnes (2002) sets

Zn(z) = hNn
−1/2 cos(mn(z + h)) (3.52)
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where N
−1/2
n is an arbitrary integration constant.

This constant can be obtained by using Eq. 3.51

1 = (hNn)−1

∫ 0

−h
cos2(mn(z + h))dz (3.53)

Nn =
1

h

∫ 0

−h
cos2(mn(z + h))dz (3.54)

=
1

2

(
1 +

sin(2mnh)

2mnh

)
. (3.55)

For the case where n = 0, m0 = ik and

Z0(z) = hN0
−1/2 cosh(k(z + h)) (3.56)

N0 =
1

2

(
1 +

sinh(2kh)

2kh

)
. (3.57)

In order to obtain a solution to the Helmholtz equation, Eq. 3.44, we set ∂/∂y = 0

and use Eq. 3.47 which yields a solution

Hn(x) = ane
−mnx + bne

mnx, (3.58)

where, an and bn are integration constants. Now, from Eq. 3.43 the complex

amplitude of the velocity potential can be expressed as

φ̂(x, z) =
(
ane

−mnx + bne
mn
)
Zn(z). (3.59)

This represents one particular solution that satisfies Eq. 3.29 and Eq. 3.30. For

the full set of solutions, linear superposition can be used to give the complex

amplitude of the velocity potential

φ̂(x, z) =
∞∑
n=0

(
ane

−mnx + bne
mn
)
Zn(z). (3.60)
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3.2.1 Radiation from an oscillating body

If a rigid body oscillates in water, radiated waves will be generated and in turn

there will be a hydrodynamic force acting on the body, commonly referred to as

the radiation force. This section will use the theory described in Section 3.2 and

discuses the interaction between an oscillating body and water waves. It will look

at the hydrodynamic force acting on a body and will show how to derive the

radiation impedance matrix for an oscillating body.

Modes of Oscillatory motion

A rigid body oscillating in water, in three dimensions has 6 modes of motion;

surge (1), sway (2), heave (3), roll (4), pitch (5) and yaw (6). This motion will

radiate a wave with a velocity potential, φ̂r, which will be a linear combination

of the radiated waves caused by each of the six oscillation modes,

φ̂r =
6∑
j=1

ϕjûj, (3.61)

where subscript j represents the mode of oscillation. Falnes (2002, sect 5.1.1) uses

ϕj = ϕj(x, y, z) as a complex coefficient of proportionality and shows that the

coefficient ϕj must satisfy;
∂ϕj
∂n

= nj on S (3.62)

where S is the wetted surface of the oscillating body, Figuire 3.3. And ϕ must sat-

isfy the same homogeneous boundary conditions as φr, namely the Laplace equa-

tion, Eq. 3.14, bottom boundary condition, Eq. 3.29, and free surface boundary

condition, Eq. 3.30.

3.2.2 Hydrodynamic force on a rigid body

The hydrodynamic force acting on a body can be obtained by integrating the

pressure over the surface area of the wetted surface. Recalling that the pressure,

p̂ = −iωρφ̂, then the force acting in surge can be represented as

F1 = −
∫ ∫

S

pn1dS (3.63)

F̂1 = iωρ

∫ ∫
S

φ̂n1dS, (3.64)
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�

�

Figure 3.3: A surface element of a rigid body oscillating in water where the
vector ~s gives the position of a point on the wet surface S and ~n is the unit
normal vector

where F1 ≡ Fx and similar expressions can be obtained for heave, F2 and sway.

F3.

The next three components of force: F4, F5, F6, are moment forces about the

three respective axes, x, y, z. The complex amplitude of the force moment can

be expressed as

M̂x = iωρ

∫ ∫
S

φ̂n4dS, (3.65)

again similar expressions can be obtained for pitch, My and yaw, Mz
1.

Thus for an arbitrary velocity potential, φ̂, the complex force can be represented

as

F̂j = iωρ

∫ ∫
S

φ̂njdS for j = 1, 2, .., 6. (3.66)

For a body floating on water, a hydrodynamic force can arise from various sources.

The most obvious force is when a water wave impinges upon the body. If the body

is fixed, this force is referred to as the excitation force, Fe. There will be a resulting

force arising from the interactions between the incident wave and the fixed body,

this is referred to as diffracted wave. The diffraction force is often neglected in

engineering analysis and in particular if the immersed body is small compared to

the wavelength of the incident wave.

1. It should be noted that (n1, n2, n3) ≡ (nx, ny, nz) = ~n and (n4, n5, n6) = ~s× ~n
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If a body is free to oscillate in water, a wave will be radiated away from the body,

thus giving rise to a radiation force. The radiated wave associated with a velocity

potential, φ̂r is given by

φ̂r = ϕjûj. (3.67)

Thus from Eq. 3.66, the j′ component of the radiation force is given as

F̂r,j′ = iωρ

∫ ∫
S

ϕjûjnj′dS. (3.68)

Now we will introduce an element called the radiation impedance matrix,

Zj′j = −iωρ
∫ ∫

S

ϕjn
′
jdS (3.69)

or, recalling Eq. 3.62 gives,

Zj′j = −iωρ
∫ ∫

S

ϕj
∂ϕji
∂n

dS (3.70)

and re-write the radiation force as

F̂r,j′ = −Zj′jûj. (3.71)

The impedance is a measure of how much a structure resists motion when sub-

jected to a given force. The subscripts on the impedance matrix, Zj′j, refer to the

j′ component of the reaction force due to the wave radiated from mode j which

is oscillation with a unit amplitude of ûj′ = 1.

As can be seen from Eq. 3.70, the impedance matrix is composed of both real

and imaginary components. As ω is real, the impedance matrix is often split into

its real and imaginary components;

Zj′j = Rj′j + iXj′j = Rj′j + iωmj′j (3.72)

where, R is referred to as the resistance, X is the reactance and m is the added

mass.
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Figure 3.4: Definition plot of wavemaker showing a wavemaker able to oscillate
in surge, in water depth, h.

3.3 Wavemaker hydrodynamics

A wavemaker generates progressive waves via the oscillation of a rigid body. In

many hydrodynamic laboratories this rigid body takes the form of either a piston

or a bottom-hinged flap. If we assume that the wavemaker is two-dimensional,

in a channel of constant water depth h, where Cartesian coordinates, x, y, z are

used with z = 0 at the still water level and the positive z:axis directed upwards,

the resulting velocity potential will take the form of Eq. 3.61. If we limit the

oscillations to surge, j = 1, the inhomogeneous boundary condition, Eq. 3.62, is

given as
∂ϕ1

∂x
= c(z) for x = 0, (3.73)

where, c(z) is a function that defines the shape profile of the wavemaker.

The other relevant boundary conditions are the Laplace equation, Eq. 3.26, bot-

tom boundary condition, Eq. 3.29, and the free-surface boundary condition, Eq.

3.30. As has been show, the solution to this boundary-value problem has been

given by Eq. 3.60, and if the oscillation is just limited to surge, we can write the

following solution,

ϕ1 = c0Z0(z)eikx +
∞∑
n=1

cnZn(z)emnx =
∞∑
n=0

Xn(x)Zn(z) (3.74)

where,

Xn(x) = cne
mnx. (3.75)

Here, mn is the solution to the dispersion relationship, Eq. 3.42, and as has been
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shown, Eq. 3.48, it is convenient to allow m0 = ik.

The unknown constants, cn, in Eq. 3.74 can be obtained if we use the boundary

condition on the wavemaker, Eq. 3.73, at x = 0,

c(z) =

[
∂ϕ1

∂x

]
x=0

=
∞∑
n=0

X ′n(0)Zn(z), (3.76)

where, X ′n(0) is used to represent dXn
dx
|x=0, as Xn is purely a function of x. Multi-

plying by the complex conjugate, Z∗m(z), and integrating from z = −h to z = 0,

using the orthogonality condition yields∫ 0

−h
c(z)Z∗m(z)dz =

∞∑
n=0

X ′n(0)

∫ 0

−h
Z∗m(z)Zn(z)dz = X ′m(0)h. (3.77)

That is

X ′n(0) =
1

h

∫ 0

−h
c(z)Z∗n(z)dz. (3.78)

Combining Eq. 3.78 and Eq. 3.75 yields

X ′0(0) = ikc0, (3.79)

X ′n(0) = mncn, (3.80)

thus giving the two coefficients

c0 =
1

ikh

∫ 0

−h
c(z)Z∗0dz, (3.81)

cn =
1

mnh

∫ 0

−h
c(z)Z∗ndz. (3.82)

The free surface elevation of the radiated wave, from Eq. 3.28, can now be ex-

pressed as

η =
iω

−g
[
φ̂r

]
z=0

(3.83)

=
iω

−g û1

∞∑
n=0

cnZn(0)e−mnx. (3.84)

This expression represents both the progressive wave, n = 0 and the evanescent

wave solutions, n ≥ 1. The evanescent waves arise due to the mismatch between
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the solid wavemaker and the velocity motion beneath a progressive first order

wave. It can be seen from this expression that the evanescent waves decay expo-

nentially with distance from x = 0 and at a distance of x� h, their contribution

to the surface elevation becomes negligible.

The radiation impedance of a wavemaker, in a channel of width d, can be ob-

tained from Eq. 3.70, where the term Rj′j is the radiation resistance matrix and

Xj′j is the radiation reactance matrix. Care should be taken not to confuse the

orthogonal set of eigenfunctions Zn(z) with the impedance Zj′j,

Z11 = iωρd

∫ 0

−h

[
ϕ
∂ϕ∗1
∂x

dz

]
x=0

(3.85)

Zj′j = Rj′j + iXj′j. (3.86)

(3.87)

As the paddle motion is limited to one degree of motion, the subscripts relating

to surge will be dropped hereafter. Thus the impedance for a wavemaker in surge

is

Z(ω) = iωρd

∫ 0

−h

[
c0Z0(z) +

∞∑
n=1

cnZn(z)

]
c∗(z)dz

= ωkρhd|c0|2 + iωρhd
∞∑
n=1

mn|cn|2. (3.88)

The radiation resistance, R(ω), is the real part of Eq. 3.88 and is commonly

referred to as the hydrodynamic damping,

R(ω) = Re {Z(ω)} = ωkρhd|c0|2, (3.89)

and the added mass, m(ω), is a product of the imaginary part of Eq. 3.88,

m(ω) =
1

ω
Im {Z} = ρhd

∞∑
n=1

mn|cn|2. (3.90)
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Figure 3.5: The four wavemaker surface profiles. The surface profile for the
hyperbolic cosine wavemaker is chosen at a wavenumber of k0s, the profile for the
cosine wavemaker is plotted for k3s, both at a fixed frequency of ωs = 2π

3.3.1 Hydrodynamic coefficients for different wavemaker

geometries

The added mass and damping coefficients of a wavemaker are dependant on its

surface profile, c(z). Changes in the wavemaker’s surface profile will result in

very different hydrodynamic characteristics. This section presents the analytic

expressions for added mass and damping for four different wavemaker types; a

piston, a bottom hinged flap, a hyperbolic cosine shaped paddle, and a cosine

shaped paddle, Figure 3.5. The piston and bottom hinged flap paddles are similar

to those found in many hydrodynamic laboratories around the world. The other

two wavemakers have been discussed in theory by Naito (2006) and Falnes (2002).

They proposed that, if the paddle profile is chosen, such that it matches the wave

field velocity profile of the waves, the evanescent contributions in Eq. 3.84 will be

zero. The situation where a wave paddle does not generate any progressive waves

and only a standing wave persists is also discussed. This is achieved by choosing

a surface profile that results in no real part to the free surface expression, Eq.

3.84.
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Derivation of hydrodynamic coefficients for a bottom hinged flap

Following Falnes’ theory outlined in Section 3.3, the hydrodynamic coefficients

for a bottom hinged flap, c(z) = 1 + z/h, can be derived. Using Eq. 3.81 and

inserting the orthogonality condition, Eq. 3.52, yields

c0 = − 1

ikh
N
−1/2
0

∫ 0

−h
(1 + z/h) cosh(k(z + h))dz

= − 1

ikh
N
−1/2
0

1 + kh sinh (kh)− cosh (kh)

k2h

=
i (1 + kh sinh (kh)− cosh (kh))

k3h2

(
1

2
+

1

4

sinh(2kh)

kh

)−1/2

. (3.91)

Thus, from Eq. 3.89 the damping for a bottom hinged paddle is

R(ω) = 4
ω ρ (1 + sinh (kh) kh− cosh (kh))2

k4h2 (2 kh+ sinh (2 kh))
. (3.92)

Similarly, combining Eq. 3.52 with Eq. 3.82 gives

cn = − 1

mnh
N−1/2
n

∫ 0

−h
(1 + z/h) cos(mn(z + h))dz

=
1

mnh
N−1/2
n

−1 + cos (mn h) + mn h sin (mn h)

mn
2h

=
(−1 + cos (mnh) + mnh sin (mn h))

mn
3h2

(
1

2
+

1

4

sin(2mnh)

mnh

)−1/2

(3.93)

and the resulting added mass, Eq. 3.90, is

m(ω) = 4 ρ
∞∑
n=1

(−1 + cos (mnh) + sin (mnh)mnh)2

mn
4h2 (2mnh+ sin (2mnh))

. (3.94)

Both of these coefficients for added mass and damping are in agreement with

Newman (2008) who presented these expressions but did not present the full

derivation.
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Derivation of hydrodynamic coefficients for a piston

For a piston wavemaker, c(z) = S0

2
(where S0 is the normalised stroke length). As

c(z) is not dependant on the water depth, z, a sinusoidal motion will result in the

entire wave board moving in unison. Following the derivation shown in Section

3.3.1, gives the hydrodynamic coefficients of added mass and damping as,

m(ω) = 4
∞∑
n=1

ρ
(
1− (cos (mnh))2)

mn
2 (2mnh+ sin (2mnh))

, (3.95)

and

R(ω) = 4
ω ρ

(
(cosh (kh))2 − 1

)
k2 (2 kh+ sinh (2 kh))

. (3.96)

Derivation of hydrodynamic coefficients for a hyperbolic cosine wave-

maker

For there to be no evanescent waves, there should be no added mass. This can be

achieved if the paddle profile, c(z), matches that of the wave velocity profile

c(z) =
cosh(ks(z + h))

cosh(ksh)
. (3.97)

Here, ks is a fixed coefficient wavenumber at a frequency of ωs that satisfies the

real part to Eq. 3.42: ks = k(ωs), and the subscript s denoted a fixed coefficient

(i.e. not dependant on frequency). Using this expression results in cn = 0 for

n ≥ 1, ensuring only real solutions and hence no evanescent contributions to the

free surface, Eq. 3.84.

The expressions for added mass and damping of a wavemaker with no evanescent

waves, after some algebra, can be obtained as

m(ω) =
∞∑
n=1

ρ e−c

(
(kse

c − kseb+c − kseb + ks − imn + imne
b+c − iebmn + imne

c)2

(2mnh− i sinh (c)) (eb + 1)2 (ks2 +mn
2
)2

)
(3.98)

and

R(ω) = ω ρ

(
(ke−i(b+ia) − k + eak − ke−ib − e−ibks + ks + eaks − kse−i(b+ia))2

4 (a+ sinh (a))
(
cos
(
b
2

))2 (
ks

2 − k2
)2

)
ei(b+ia)

(3.99)

where a = 2kh, b = 2iksh and c = 2imnh.
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It should be noted that the wave number, mn = mn(ω), in Eq. 3.98 is frequency

dependant and the wavemaker has no added mass at only one chosen frequency,

ωs. This type of wavemaker will herein be referred to as a hyperbolic cosine

wavemaker, cosh(ωs), where ωs designates the frequency at which the added mass

tends to zero. Here, values of ωs = π, 2π and 3π will be considered, resulting in

three different wavemaker geometries. The added mass for the wavemakers can

be seen in Figures 3.6a, 3.6c, and 3.6e, and it is clear that the added mass, m(ω),

tends to zero at the chosen design frequency, ωs. All graphs presented within this

paper are evaluated for a water depth of h = 0.75[m] and a width of d = 0.5[m].

Derivation of hydrodynamic coefficients for a cosine wavemaker

The other special case is when a paddle can move in such a way that no progressive

wave is radiated, only a standing evanescent wave persists. This would be very

difficult to achieve in a physical wavemaker, but could more easily be achieved in

a numerical code, or as proposed by Naito (2006), using segmented wavemakers.

For there to be no progressive wave, the wavemaker needs to move in a manner

that results in the real part of Eq. 3.84 being zero. This is achieved when the

wavemaker profile is

c(z) =
cos(m3s(z + h))

cos(m3sh)
. (3.100)

This form of wavemaker will be referred to as a cosine wavemaker. Here, m3s is the

third solution from the infinite sequence of imaginary solutions to the dispersion

relationship, Eq. 3.42, at a fixed frequency of ωs, m3s = m3(ωs). The third mode

(n = 3) is chosen arbitrarily and any value of n ≥ 1 would be equally valid. The

larger the value of n, the more oscillations in the wavemaker’s surface through

the water column. The resultant shape using n = 3 can be seen in Figure 3.5.

The operation of this kind of wavemaker would result in the top and bottom of

the paddle oscillating out of phase with each other.

The choice of such a wavemaker profile results in the real part of Eq. 3.84 becoming

zero leaving only a standing wave.

The corresponding expressions for added mass and damping for such a wavemaker

are

m(ω) = 4ρ
∞∑
n=1

(−m3s sin (m3sh) cos (mnh) +mn cos (m3sh) sin (mnh))2

(2mnh+ sin (2mnh)) (cos (m3sh))2 (−m3s
2 +mn

2)2 (3.101)
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and

R(ω) = ωρ

(
(−kea+b + keb − kea + k − im3s + im3se

b − im3se
a + ik3se

a+b)2e−a−b

4 (a+ sinh (a))
(
cosh

(
b
2

))2
(k2 +m3s

2)2

)
(3.102)

where a = 2kh and b = 2im3sh.

Obviously, a wavemaker operating in a manner that does not create any progres-

sive waves would have little practical value. The hydrodynamic coefficients have

been derived out of academic curiosity and to show that it is possible to have a

paddle that will have zero damping and no progressive waves.

Figures 3.6b, 3.6d and 3.6f show that such a wavemaker has zero damping at the

design frequency of ωs, but only at this frequency, at all other frequencies the

damping is non-zero.

3.4 Wave Generation

When generating waves in a flume or tank, it is important to be able to con-

trol both the frequency and the amplitude of the test waves. The frequency of

the monochromatic test waves is relatively simple as it is the same as the fre-

quency of oscillation as the wavemaker. The more complicated parameter is the

displacement amplitude of the waveboard. One simple concept used is that of

Galvin (1964), who reasoned that the volume of water displaced by the wave-

maker should be equal to the volume of water in the crest of the propagating

wave, Figuire 3.7. For a piston type wavemaker this results in

X0h =

∫ λ
2

0

H

2
sin(kx)dx (3.103)

=
HL

2π
(3.104)

=
H

k
(3.105)

and thus the ratio of stroke displacement, S, to far wave height, H is(
H

X0

)
piston

= kh. (3.106)
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(a) Added mass with ωs = π
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(b) Damping with ωs = π
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(c) Added mass with ωs = 2π
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(d) Damping with ωs = 2π
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(e) Added mass with ωs = 3π
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(f) Damping with ωs = 3π

Figure 3.6: Hydrodynamic coefficients for the four different shaped wavemak-
ers; Piston, Bottom hinged flap, cosh(ωs), cos(ωs). Figures 3.6a and 3.6b are for
paddles with ωs = π, figures 3.6c and 3.6d with ωs = 2π, and figures 3.6e and
3.6f with ωs = 3π.
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X0

H

h

Figure 3.7: Simplified shallow water piston-type wavemaker theory where the
volume of water displaced equals the volume of water displaced (Dean and Dal-
rymple, 1991)

Or following a similar methodology, for a bottom hinged flap,(
H

X0

)
flap

=
kh

2
. (3.107)

This is a simplified representation of the physical process and a better value for

the ratio of wave height to stroke ratio can be obtained from Eq. 3.84. This

equation relates the far-field wave height to the complex stroke amplitude of the

wavemaker. When referring to wave height, we should be more specific and state

that, what we are primarily concerned with is the far-field wave height. This

means that we are not interested in the evanescent wave contribution and so the

far-field wave is for distances of x� 2h.

At large distances from the wave board, the free surface, Eq. 3.84, can be given

as

η̂r =
iω

−g ûc0Z0(0)eik0x (3.108)

where the evanescent contributions have been neglected. As we are assuming

linear first order waves, this can be represented as

η̂r =
H

2
eik0x. (3.109)

Equating Eq. 3.108 and Eq. 3.109 will give a relationship between the wave height

and the velocity of the wavemaker.
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Noting that û = iωx̂ = iωx0e
iϕ, recalling the dispersion relationship is given as

ω2

gk
= tanh(kh) =

sinh(kh)

cosh(kh)
(3.110)

and after some algebra, an expression relating the far field wave wave height, H,

to the stroke displacement, x0, can be obtained.

For a piston wavemaker, this ratio takes the form of,

H

X0

= 4
(cosh (kh))2 − 1

2 kh+ sinh (2 kh)
. (3.111)

and for a bottom hinged flap the ratio of far-field wave height to stroke displace-

ment is
H

X0

= 4
(1 + sinh (kh) kh− cosh (kh)) sinh (kh)

kh (2 kh+ sinh (2 kh))
. (3.112)

The algebra for a hyperbolic cosine wave is a little more involved, but remember-

ing that ks sets the shape of the wavemaker, the ratio is expressed as

H

X0
= −

(
ks e2 (ks+k)h + e2 ks hk − ke2 (ks+k)h − ks + k − e2 khks − e2 khk + e2 ks hks

)
e−(ks+k)hk sinh (kh)(

−ks2 + k2
)

(2 kh+ sinh (2 kh)) cosh (ks h)
.

(3.113)

Figure 3.8 shows the wave height to stroke ratio for the three different shaped

wavemakers. All three cases give the same limit as kh → ∞ because then, only

the upper part of the wavemaker is useful for the generation of a propogating

wave. Under shallow water conditions, when kh < 1, the piston produces twice

as much water displacement and as a result twice as large a propogating wave as

a flap. This is very similar to the relationship that proposed by Galvin (1964).

It can also be seen from Figure 3.8 that the cosh(2π) wavemaker would require

larger displacements for a given wave height compared to a piston and a bottom

hinged flap as it displaced less water.

3.5 Chapter Conclusions

This Chapter has presented the theory needed to derive the analytical hydro-

dynamic coefficients of wavemakers. Analytical expressions for added mass and

damping for four different types of wavemaker were presented: a piston, a bottom-

hinged flap, a hyperbolic cosine and a cosine wavemaker. It was clearly shown that
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Figure 3.8: Graphical representation showing the wave height to stroke ratio as
a function of relative depth for a piston, bottom hinged flap and a hyperbolic
cosine, cosh(2π) type wavemakers.

a wavemaker with a hyperbolic cosine profile will have zero added mass at one

chosen frequency and that a cosine shaped wavemaker will have zero damping at

one specific frequency. The transfer function relating stroke amplitude to far-field

wave height was then presented for three different wavemakers. The analytical ex-

pressions for hydrodynamic coefficients will prove useful for the analysis of power

absorption in the following Chapter.



Chapter 4

Wave absorption by an oscillating

body

In this section the absorption of water waves impinging upon a rigid body are

discussed. The basic theory behind wave energy absorption will be presented.

The different types of real and reactive control will be derived theoretically and

expressions comparing absorbed power against theoretically maximum power will

be presented. The control theory in this Chapter will follow the work presented by

Price (2009) and apply it to the hydrodynamic theory on wavemamkers presented

in Chapter 3.

Due to the complexities involved, this chapter will look at linear, small amplitude

waves, where it is assumed that the wave height and steepness are sufficiently

small for linear wave theory to be valid. In addition, body motions are assumed

to be sufficiently small so that linear dynamics can be used, thus allowing the

boundary conditions to be applied on the equilibrium position of the body and

not the instantaneous position. When presenting power absorption ratios across a

broadband of frequencies, these graphs will be considering discretised monochro-

matic waves.

4.1 Absorption by constructive and destructive

interference

One of the great paradoxes in the wave energy sector is, that “a good wave ab-

sorber, must be a good wavemaker” (Falnes and Budal, 1978). By definition, the

absorption of energy from an in-coming wave must result in a reduction of wave

energy passing the wave energy converter (WEC). This energy extraction can

42
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(b) Wave field with an absorbing wave-
maker

Figure 4.1: Wave absorption via constructive and destructive interference. (a)
shows how an incoming wave interacts with a solid wall, where a reflected wave is
generated. These then combine constructively which results in a standing wave.
(b) shows how the wave field changes with an oscillating wall boundary. The inci-
dent wave is absorbed by the wavemaker because the reflected wave is cancelled
by the generated wave

best be explained via the process of constructive and destructive interference

between the incoming wave and the radiated wave. Figure 4.1a shows how an

incoming wave impinging on a solid wall will create a standing wave due to con-

structive interference. Figure 4.1b shows the wave field when the wall is replaced

by a oscillating wavemaker. The wavemaker radiates a wave of equal amplitude

to the reflected wave, but 180◦ out of phase. This results in destructive interfer-

ence between the radiated wave and the reflected wave and full absorption of the

incoming wave field. This is a counter intuitive paradigm, but it is clear that you

must radiate a wave if you hope to absorb a wave. How much of this energy that

the WEC can absorb is dependent upon what control strategy employed. This

topic will be discussed further in Section 4.3.
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Figure 4.2: Free body diagram showing the forces acting on an absorbing wave
maker in surge

4.2 Wave energy converter dynamics

In order to derive a general equation of motion, one needs to start with Newton’s

second law of motion,
∑
F = ma. For a wave energy absorber shown in Figure

4.2, Newton’s second law, in the frequency domain, can be expanded as

Fe(ω) = MA(ω) + Fr(ω) + Fb(ω) + Floss(ω) + Fu(ω), (4.1)

where, Fe(ω) is the excitation force due to the wave, M is the mass of the body,

A(ω) is acceleration, , Fr is the radiation force, Fb a restoring spring force propor-

tional to displacement, Fb = cx(ω), Floss represents both viscous and frictional

losses and the final term, Fu is the control force which represents the load force

for wave energy absorption.

The excitation force, Fe(ω), is the resultant force experienced by a body if it is

held motionless in the presence of incoming waves. If we consider the situation

in Figure 4.1a, where an in-coming wave, η̂0 = Ae−ikx, interacts with a solid wall

and a reflected wave is diffracted: η̂d = Aeikx. The velocity potential can then be

represented as

φ̂0 + φ̂d = − g

iω
e(kz)(η̂0 + η̂d). (4.2)

The force per unit with in surge, on a wall from −h ≤ z ≤ 0 can now be obtained

from Eq. 3.66 as

Fe(ω) = 2ρgA
sinh(kh)

k cosh(kh)
. (4.3)

If we are to assume zero losses, and represent the forces in terms of the product
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of their impedance and velocity, Eq. 4.1 can be represented as

Fe(ω) = iωMU(ω) + Zr(ω)U(ω) +
c

iω
U(ω) + Zu(ω)U(ω) (4.4)

where, Zr is the radiation impedance and, Zu is the control impedance. Recalling

the radiation impedance from Eq. 3.72 the excitation force can now be re-written

as

Fe(ω) =
(
R(ω) + i

(
ω[M +m(ω)]− c

ω

))
U(ω) + Zu(ω)U(ω) (4.5)

= (Zi(ω) + Zu(ω))U(ω) (4.6)

where Zi is the intrinsic impedance,

Zi(ω) = R(ω) + i
(
ω[M +m(ω)]− c

ω

)
. (4.7)

This can then be rearranged to solve for the velocity,

U(ω) =
Fe(ω)

(Zi(ω) + Zu(ω))
. (4.8)

4.2.1 Time domain equations of motion

The equations of motion thus far have been modelled using the frequency domain

equations. This form of analysis is used predominantly in the wave energy sector

and naval architecture as it is quicker and easier than using time domain equa-

tions. It is important to highlight that this is however an assumption, based on

the fact that the waves are linear and superposition applies. It is also important to

appreciate the differences and implications of transferring between the frequency

domain and time domain via Fourier transform.

It is not possible to directly apply a Fourier transform on Eq. 4.4, as the added

mass term in the radiation impedance, Zr(ω), tends to a non zero value at infinity,

m(∞) = m∞ (Cummins, 1962). In order to facilitate the Fourier transform, the

multiplication of the two frequency dependent terms needs to tend towards zero

at infinity. This is achieved by isolating the frequency dependent terms:

K(ω) = Zr(ω)− iωm∞ (4.9)

= R(ω) + iω (m(ω)−m∞) (4.10)
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Therefore the excitation force in the frequency domain can now be represented

as

Fe(ω) = iω [M +m∞]U(ω) +K(ω)U(ω) +
c

iω
U(ω) + Fu(ω). (4.11)

The time domain representation is obtained via a Fourier transform, resulting in

fe(t) = [M +m∞] a(t) + k(t) ∗ u(t) + cx(t) + fu(t), (4.12)

where k(t) ∗ u(t) is the convolution. It has been shown that the radiation force is

only affected by velocities at t ≤ 0 (Wehausen, 1992; Falnes, 1995). Price (2009)

presents the excitation force in the time domain as

fe(t) = [M +m∞] a(t) +

∫ t

0

k(τ)u(t− τ)dτ + cx(t) + fu(t), (4.13)

showing that both instantaneous and past velocities are required to solve the

equation.

It is important to understand the implications that the convolution has on the

time domain equations, especially when dealing with control of the devices. This

will be elaborated on in Section 4.3.1.

4.2.2 Absorbed power

The time averaged power absorbed by the mechanical resistance in the control

impedance, Zu, is given as

Pu =
1

2
<[Zu(ω)] |U(ω)|2 . (4.14)

Using Eq. 4.8 this can be re-written as

Pu =
1

2
Re [Zu(ω)]

|F̂e,j|2
|Zi(ω) + Zu(ω)|2

=
Ru(ω)|Fe(ω)|2/2

[Ri(ω) +Ru(ω)]2 + [Xi(ω) +Xu(ω)]2
, (4.15)

The optimal condition to maximise the absorbed power is well known and dis-

cussed by Mei (1976); Newman (1976); Evans (1976). The amplitude of the radi-

ated wave needs to be of equal amplitude to the diffracted wave and 180◦ out of

phase. By inspection, Eq. 4.15 is maximised when the control impedance equals
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the complex conjugate of the intrinsic impedance,

Zu = Z∗i (ω) ≡ Zu,OPT (ω) (4.16)

this satisfies both of these conditions to maximise power absorption.

Setting the control impedance, Zu(ω) to the complex conjugate of the intrinsic

impedance Z∗i (ω), namely setting the variablesRu(ω) andXu(ω) to their optimum

values of Ri(ω) and −Xi(ω) gives an expression for the maximum power

Pu,max =
|Fe(ω)|2

8Ri

. (4.17)

Combining Eqs. 4.15 and 4.17, results in an expression that yields the ratio be-

tween absorbed power and the theoretical maximum power absorption

Pu
Pu,max

= 4
Ru(ω)Ri(ω)

(Ri(ω) +Ru(ω))2 + (Xi(ω) +Xu(ω))2 . (4.18)

4.3 Control implementation

In order to absorb incoming waves, the ability to control the motion of the ab-

sorber is paramount. In WECs, the force that extracts the energy from the waves

and converts it to electrical power is often referred to as the power take off (PTO).

Here the control force, FU , is analogous to this PTO force referred to in the lit-

erature.

The generalised linear control force for a wave absorber can be represented as

Fu(ω) = iωmu(ω)U(ω) +Ru(ω)U(ω) +
cu(ω)

iω
U(ω). (4.19)

Where mu, Ru and cu are the mass, damping and spring control coefficients.

These are coefficients proportional to acceleration, velocity and displacement re-

spectively.

Here the control impedance can now be written as

Zu = Ru(ω) + i

(
ωmu(ω)− cu(ω)

ω

)
. (4.20)
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Under a fixed coefficient control system tuned to a fixed frequency of ω = ωp

results in the optimal control impedance of

Zu,OPT (ωp) = R(ωp)− i
(
ωp (M +m(ωp))−

c

ωp

)
, (4.21)

= Rp − i
(
ωp (M +mp)−

c

ωp

)
. (4.22)

Here, Rp andmp have been introduced to show that these coefficients are no longer

frequency dependent and denote fixed coefficients at a frequency of ω = ωp.

If this control is to be implemented using a system with three control coefficients,

mu, ru and cu the generalised absorbing force is obtained as

fu(t) = mu(a(t) + buu(t) + cux(t). (4.23)

The impedance matrix in the frequency domain can then be obtained as

Zu(ω) = ru + i
(
ωmu −

cu
ω

)
. (4.24)

If we now compare Eqs. 4.24 and 4.22 and separate out the real and imaginary

terms we get,

ru = Rp (4.25)

−
[
ωmu −

cu
ω

]
= ωp (M +mp)−

c

ωp
. (4.26)

This gives a simple solution for the real control coefficient, ru, but Eq. 4.26 is an

indeterminate equation with two unknowns, mu and cu. For this situation, where

there is one equation and two unknowns, arbitrarily choosing one of the values

will as a result a value for the other which satisfies this equation. Therefore there

are any number of solution pairs to this equation. Similar to Price (2009) three

possible solutions to Eq. 4.26 will be presented.

The first solution can be seen by inspection and is obtained when cu = c and in

order to satisfy Eq. 4.26, this then results in mu = M + mp. This is one of the

many pairs of solutions that would satisfy Eq. 4.26, but for this specific pair, the

mass control coefficient cancels the physical mass and the spring control cancels

the spring term. This solution is referred to as mass-spring-damping. The other

two situations discussed are the extreme cases when mu = 0 and cu = 0. The
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former will be referred to as damping-spring and the latter as mass-damping.

The control impedance coefficients for a mass-spring-damping coefficient system

are given as

mu = −[M +mp], (4.27)

ru = Rp, (4.28)

cu = −c. (4.29)

Resulting in a frequency domain representation of the ideal control force at a

tuned frequency of ωp

Fu(ω) = −iω[M +mp]U(ω) +RpU(ω) +
c

iω
U(ω), (4.30)

and the resulting control impedance as

Zu = Rp − i
(
ω [M +mp] +

c

ω

)
. (4.31)

Inserting Zu into Eq. 4.18 will give an expression for the ratio of absorbed power

to maximum power as

Pu
Pu,max

=
4RpR(ω)

(Rp +R(ω))2 + (ω(m(ω)−mp))2
. (4.32)

This expression shows that the physical mass, M , and spring, c, have been can-

celled out by the control reactance, Xu. As mentioned before, there are many sets

of control reactance pairs, mu and cu that could have been used to satisfy Eq. 4.26

but for other pairs, the the control coefficients would not completely cancel out

the physical mass and spring terms. This would mean that some of the intrinsic

mass would need to be cancelled with the control spring, or conversely some of

the intrinsic spring would need to be cancelled with the control mass term (Price,

2009).

Figure 4.3 plots Eq. 4.32 over a range of frequencies showing how Pu/Pmax varies

with choice of control frequency, ωp for each of the wavemaker profiles. It is clear

that optimal absorption is achieved at the chosen control frequency ωp = π, 2π, 3π,

Figures 4.3a, 4.3b and 4.3c respectively. It can be seen that there are differences

in absorption levels at frequencies of ω 6= ωp between each of the different shaped

wavemakers. The hyperbolic cosine shaped wavemaker achieves the highest levels
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of absorption over the broadest range of frequencies. It is also shown that the

absorption characteristics for each specific wavemaker change based upon the

selection of ωp.

Integrating Eq. 4.32 over the range of frequencies typical to a 1/100th wave tank

(0.5 and 1.75 [Hz]) and normalising gives,

ξ =
5

2π

∫ 7π
2

π

Pu
Pu,max

d(ω), (4.33)

where, ξ is a measure of the effectiveness of the wavemaker in absorbing discretised

monochromatic waves of different frequencies to the tuned frequency, ωp. This

gives a quantitative appreciation of how well the device absorbs incoming waves

in the frequency range of interest, namely that of a typical hydrodynamic wave

flume. Graphically it is the sum of the discretised values of Pu/Pmax shown in

Figure 4.3 divided by the interval range, ω = π → 3.5π. Table 4.2 shows values

of ξ for an absorbing wavemaker using a mass-damper-spring control system.

Table 4.1 shows that good absorption of incoming waves can be achieved using

this type of control system. It is important to appreciate that in the control

system in a laboratory or in a WEC can only be tuned to one specific frequency

at a time. If the incoming waves are monochromatic, then the wave absorber

can be tuned to the frequency of the incoming wave train and full absorption

could be achieved. This is not the case if the incoming waves are polychromatic.

Optimal absorption can only be achieved at one frequency in the spectrum, as

the absorption coefficients are fixed. Generally, the peak energy frequency of the

incoming waves is chosen as the tuning frequency. Table 4.1 shows the levels

of absorption expected from a wave absorber, tuned to a frequency of ωp, in

discretised monochromatic seas in a range of ω = π → 3.5π.

4.3.1 Time domain representation of control

As highlighted in Section 4.2.1, care needs to be taken when transferring between

the time domain and frequency domain via Fourier transforms.

Taking the general control force frequency domain equation, Eq. 4.19, and treat-

ing it in a similar manner to Eq. 4.11, namely separating out the frequency in-

dependent and dependent terms, the optimal control force (Price, 2009) can be
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(a) mass-spring-damper tuned to π
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Figure 4.3: Absorption characteristics using a mass-damper-spring control sys-
tem. Here, (a) shows how each of the wavemakers absorb incoming waves, under
discretised monochromatic waves, using a mass-damper-spring control system
tuned to a frequency of ωp = π, (b) is for when ωp = 2π and (c) is for when
ωp = 3π
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Table 4.1: Absorption efficiency, ξ, for a paddle controlled using mass-spring-
damper coefficients

Tuning frequency ωp
π 2π 3π

Piston 0.602 0.695 0.617
Flap 0.872 0.892 0.866
cosh(π) 0.677 0.761 0.712
cosh(2π) 0.941 0.951 0.936
cosh(3π) 0.883 0.982 0.985

represented as

Fu(ω) = −iω[M +m∞]U(ω) +K∗(ω)U(ω)− c

iω
U(ω) (4.34)

where, K∗(ω) is the complex conjugate of the frequency dependent radiation

impedance, K(ω). It has been shown that the time domain control force must be

real, K∗(ω) = K(−ω), therefore the inverse Fourier transform, F−1 {K∗(ω)} =

k(−t) (Smith, 1997) and this results in the time domain equation of:

fu(t) = −[M +m∞]a(t) + k(−t) ∗ u(t)− cx(t). (4.35)

The difference between Eq. 4.12 and Eq. 4.35 is that the convolution is now time

reversed. The previous convolution was shown to be dependent on instantaneous

and past measurements and k(t) is referred to as the memory kernel. Now, the

convolution is represented as the time reversed memory kernel, k(−t), and there-

fore it is anti-causal and future knowledge is required. It is referred to as the

premonition term (Price, 2009). The ideal control force in the time domain can

be represented as (Naito and Nakamura, 1985):

fu(t) = −[M +m∞]a(t) +

∫ ∞
0

k(τ)u(t+ τ)dτ − cx(t) (4.36)

This equation highlights that future knowledge of the velocity is required in order

to be able to achieve optimal control. Herein this thesis, analysis will be conducted

using discretised monochromatic waves. In monochromatic waves future knowl-

edge is implicitly available as all future waves will be of the same frequency and as

such, optimal absorption can be achieved at one specific chosen frequency. There

is no memory effect for monochromatic waves. The rest of this thesis will proceed
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in the frequency domain, conscious of the findings just presented.

4.3.2 Damper-spring control

As discussed in Section 4.3 there are two extreme situations that present a solution

to Eq. 4.26. The first to be discussed here is when mu = 0, thus leaving a damper-

spring control scheme. The following will present the derivation of absorption

efficiency for a spring-damping control scheme with fixed control coefficients of

ru and cu.

The control force that uses a spring-damper coefficients in the time domain can

be represented as

fu(t) = ruu(t) + cux(t), (4.37)

and thus the impedance in the frequency domain can be obtained as

Zu(ω) = ru +
cu
iω
. (4.38)

Optimising Eq. 4.38 at a single frequency, ωp, results in

Zu(ωp) = ru −
icu
ωp
. (4.39)

Now we can compare the optimal impedance, Eq. 4.22 and the impedance with

spring-damping control, Eq. 4.39, and this results in the following control coeffi-

cients,

ru = Rp, (4.40)

cu =
(
ω2
p(M +mp)− c

)
, (4.41)

which are in agreement those control coefficients presented by Naito (2006), at-

tributed to Bessho (1973) (in Japanese) but the derivation was not shown.

Substituting these back into Eq. 4.38, gives the tuned control impedance at ωp,

for a spring-damping system, over the full range of frequencies

Zu(ω) = Rp −
i

ω

[
ω2
p (M +mp)− c

]
. (4.42)

Using radiation resistance and reactance matrices from Eq. 4.7 and Eq. 4.42 and

substituting into the power ratio, Eq. 4.18, yields a power absorption ratio for a
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Table 4.2: Absorption efficiency, ξ, for a mass-less paddle controlled using spring-
damper coefficients

Tuning frequency ωp
π 2π 3π

Piston 0.628 0.652 0.312
Flap 0.876 0.904 0.775
cosh(π) 0.699 0.735 0.430
cosh(2π) 0.967 0.951 0.899
cosh(3π) 0.990 0.991 0.986

spring-damper controlled system,

Pu
Pu,max

=
4RpR(ω)

(Rp +R(ω))2 +
(
ω(M +m(ω))− ω2

p

ω
(M +mp)

)2 . (4.43)

Figure 4.4 plots Eq. 4.43 over a range of frequencies showing the differences

in absorption levels for the different absorbing-wavemaker shapes. Similar to the

mass-spring-damper control scheme, theoretically, maximum absorption is achiev-

able at the chosen tuned frequency, ωp. At this one frequency the damper-spring

scheme will achieve the same levels of absorption as the mass-damper-spring or

mass-damper schemes. It is away from this frequency at ω 6= ωp that the absorp-

tion characteristics differ greatly between the schemes. Compared to the mass-

damper-spring control scheme, the damper-spring scheme does not achieve such

high levels of absorption at the lower frequencies. This is due to the fact that the

intrinsic mass term, M , is not completely cancelled by the control reactance and

remains in Eq. 4.43.

Table 4.2 shows the absorbing wavemakers’ efficiency, Eq. 4.33, using damper-

spring control coefficients, where the wavemaker has zero mass. Construction of

a mass-less paddle is physically impossible, but this could be implemented in a

numerical code. This could provide an absorbing boundary condition to deal with

wave reflections in a numerical wave tank. As can be seen from Table 4.2 very

high levels of absorption, over the chosen integral range, could be achieved in

conjunction with a cosh(3π) shaped wavemaker.

If the paddle has a finite mass, M, the absorption efficiency will decrease due to the

second term in the denominator of Eq. 4.43. Table 4.3 shows ξ for a paddle with

a mass of 1kg. It can be seen that introduction of mass decreases the absorption
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Figure 4.4: Absorption characteristics using a damper-spring control system.
Here, (a) shows how each of the wavemakers absorb incoming waves, under dis-
cretised monochromatic waves, using a mass-damper-spring control system tuned
to a frequency of ωp = π, (b) is for when ωp = 2π and (c) is for when ωp = 3π
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Table 4.3: Absorption efficiency, ξ, for a paddle controlled using spring-damper
coefficients

Tuning frequency ωp
π 2π 3π

Piston 0.591 0.603 0.266
Flap 0.826 0.859 0.647
cosh(π) 0.662 0.690 0.372
cosh(2π) 0.875 0.904 0.736
cosh(3π) 0.709 0.852 0.680

characteristics of the wavemaker at lower frequencies.

4.3.3 Mass-damper control

This section presents the absorption efficiency of a wavemaker using the other

extreme solution to Eq. 4.26, where, cu = 0. This is referred to as a mass-damper

control scheme. In the time domain, the control force is represented as

fu(t) = mua(t) + ruu(t). (4.44)

The control impedance in the frequency domain is represented as

Zu(ω) = ru + iωmu. (4.45)

Optimising Eq. 4.45 at one single frequency, ωp, results in

Zu(ωp) = ru + iωpmu. (4.46)

Comparing this to the optimal impedance, Eq. 4.22 and the impedance with

spring-damping control, Eq. 4.46, results in the following control coefficients

(Price, 2009),

ru = Rp, (4.47)

mu = −
(
(M +mp)− c/ω2

p

)
, (4.48)

Substituting these back into Eq. 4.45, gives the tuned control impedance at ωp,
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Table 4.4: Absorption efficiency, ξ, for a paddle controlled using mass-damper
coefficients

Tuning frequency ωp
π 2π 3π

Piston 0.585 0.689 0.609
Flap 0.815 0.879 0.856
cosh(π) 0.646 0.751 0.700
cosh(2π) 0.830 0.932 0.921
cosh(3π) 0.545 0.971 0.971

for a spring-damping system, over the full range of frequencies

Zu(ω) = Rp − iω
(

(M +mp)−
c

ω2
p

)
(4.49)

Using radiation resistance and reactance matrices from Eq. 4.7 and Eq. 4.49 and

substituting into the power ratio Eq. 4.18, yields a power absorption ratio for a

spring-damper controlled system,

Pu
Pu,max

=
4ω2RpR(ω)

ω2(Rp +R(ω))2 +
(
ω2(m(ω)−mp)− c

(
1− ω2

ω2
p

))2 . (4.50)

Here can be seen that the physical mass has been cancelled out but but the added

mass and the intrinsic spring persist. Figure 4.5 shows that implementation of

complex conjugate control at the one tuned frequency, ωp, will result in optimal

control for all of the wavemakers at that specific frequency, ω = ωp. Again, at

this frequency, the absorption characteristics are identical to that of mass-damper-

spring and damper-spring schemes, but away from this frequency the absorption

characteristics will differ to a system using both of these other control schemes.

The differing absorption characteristics at frequencies of ω 6= ωp results in dif-

ferent values of ξ over the chosen definite integral. This can be clearly seen in

Table 4.4. The spring coefficient was chosen as c = 20N/m, based on the flap

type wavemakers used at the University of Edinburgh.
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(b) mass-damper tuned to 2π
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(c) mass-damper tuned to 3π

Figure 4.5: Absorption characteristics using a mass-damper control system.
Here, (a) shows how each of the wavemakers absorb incoming waves, under dis-
cretised monochromatic waves, using a mass-damper-spring control system tuned
to a frequency of ωp = π, (b) is for when ωp = 2π and (c) is for when ωp = 3π
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4.3.4 Damper control

This section presents the derivation of optimal control choice of a purely damping

control system and analyses the sensitivity to tuning frequency.

The time domain control force using just a damper scheme is represented as

fu(t) = ruu(t), (4.51)

where the impedance in the frequency domain is

Zu(ω) = ru. (4.52)

As the control impedance in this situation is purely real, complex conjugate con-

trol cannot implemented as there is no reactive component to cancel the complex

term in the intrinsic reactance.

Optimising Eq. 4.52 at one single frequency, ωp, results in

Zu(ωp) = ru. (4.53)

Comparing this to the optimal impedance, Eq. 4.22 and the impedance with

spring-damping control, Eq. 4.53, results in the optimal setting for damping,

tuned to a frequency of ωp

ru = |Zu,OPT | =
√
R2
p +

(
ωp [M +mp]−

c

ωp

)
. (4.54)

Again, making use of the radiation resistance and reactance matrices from Eq.

4.7 and Eq. 4.52, then substituting into the power ratio Eq. 4.18, yields a power

absorption ratio for a purely real controlled system,

Pu
Pu,max

=

4R(ω)

√
R2
p +

(
ωp (M +mp)− c

ωp

)
(
R(ω) +

√
R2
p +

(
ωp (M +mp)− c

ωp

))2

+
(
ω(M +m(ω))− c

ω

)2

.

(4.55)

Absorption of incoming waves using just real control, via a damper, is less complex
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Table 4.5: Absorption efficiency, ξ, for a paddle controlled using just a damping
coefficient

Tuning frequency ωp
π 2π 3π

Piston 0.593 0.588 0.577
Flap 0.828 0.843 0.842
cosh(π) 0.665 0.664 0.667
cosh(2π) 0.881 0.885 0.884
cosh(3π) 0.770 0.808 0.795

and easier to implement than using reactive control. For this reason many WECs

use only a real PTO in their devices and therefore it is important to appreciate the

affect that control choice will have on absorption levels across a broad bandwidth

of frequencies when tuned to one frequency.

Figure 4.6 show the absorption levels for the different wavemaker geometries

when tuned to frequencies of ωp = π, 2π, 3π. The biggest difference between

using control scheme with just a real component to one that uses both real and

reactive components is that full absorption at the tuned frequency is not possible.

This is because there is no reactive term in the control impedance to cancel out

the intrinsic reactance of the wavemaker.

Table 4.5 shows how using a control strategy based upon damping alone affects

the power absorption. An interesting result here is that for all wavemaker shapes,

absorption efficiency is relatively insensitive to changes in tuning frequency. This

suggests that the choice of control frequency, ωp, is not a major contributor to

absorption efficiency for these wavemakers between the chosen integral limits.

The bottom hinged flap performs favourably compared to the three hyperbolic

cosine shaped paddles, this could be due to there being a local minimum in the

intrinsic reactance (added mass) of this paddle at a frequency of 1.7π [rad/s],

Figure 3.6a, resulting in the real part of the power absorption equation Eq. 4.18

dominating over the imaginary part.
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Figure 4.6: Absorption characteristics using a damper control system. Here,
(a) shows how each of the wavemakers absorb incoming waves, under discretised
monochromatic waves, using a mass-damper-spring control system tuned to a
frequency of ωp = π, (b) is for when ωp = 2π and (c) is for when ωp = 3π
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4.3.5 Effect of control

In wave energy research, it has been long known that optimum absorption of

incoming monochromatic waves can be achieved if the power take off (PTO)

coefficients of the wave energy absorber are chosen such to achieve impedance

matching. Mei (1976) showed that this could be implemented using two con-

trol coefficients; one proportional to acceleration and the other proportional to

velocity. Evans (1981) arrived at the same results using a velocity-proportional

damping force and a displacement-proportional spring force. Using either a mass-

damping or a spring-damping approach will yield the same optimum absorption

of incoming waves at that one specific tuned frequency, ωp. Price (2009) showed

that, for a point absorber acting in heave, both of these approaches differ when

absorbing incoming monochromatic waves of a frequency ω 6= ωp. Figure 4.7

confirms that this is also true for absorbing devices acting in surge.

Figure 4.7 shows the absorption levels of four different wavemakers in discretised

monochromatic waves using different control strategies, each tuned to ωp = 3π.

This allows for comparison of each control scheme for one single absorbing de-

vice, highlighting the differences. It is clear that the choice of control affects the

absorption levels across the bandwidth of frequencies. The difference between the

various control strategies is most evident when considering just one wavemaker

shape. For example, for a cosh(3π) paddle, tuned to a frequency of ω = 3π, Figure

4.7d, the mass-damper, spring-damper and mass-spring-damper control strategies

all achieve the same value of Pu/Pmax = 1. Away from ω = 3π, the absorption

levels of waves at a frequencies different to that of the tuned frequency, ω 6= ωp,

differ greatly.

There is a notable difference in absorption levels between the mass-damper and

the spring-damper methods of control in Figure 4.7. This can be seen quantita-

tively comparing the value of ξ in Table 4.3 and Table 4.4, at a tuning frequency

of ωp = 3π. Control implemented using mass-damping coefficients out-performs

that of spring-damping for every wavemaker shape. Interestingly, upon changing

tuning frequency to ωp = π, the situation is reversed and control using spring-

damping coefficients display better absorption characteristics than mass-damping.

When only a damping coefficient is used, complex conjugate control is not possible

and optimal absorption, Pu/Pmax = 1, at ωp is unachievable. When only real

control is implemented for a piston wavemaker, Figure 4.7a, optimal control is
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never achieved, but high levels of absorption are achieved at the lower bandwidth

of frequencies. These lower frequencies will have longer wavelengths and once

displacement limits are taken into consideration, these high levels of absorption

would disappear.

The highest levels of absorption, within the frequencies of interest, were ob-

tained for a cosh(3π) paddle with a mass-spring-damper control strategy tuned

to ωp = 3π. Construction of a cosh(3π) wavemaker would be difficult but this

shape could be used in a numerical wave tank as an absorbing boundary con-

dition instead of a computationally expensive damping region in the numerical

domain. The hyperbolic cosine profile wavemaker exhibits better absorption char-

acteristics and where Clément (1996) coupled a piston and a sponge-layer and an

absorbing piston, the hyperbolic cosine wavemaker would result in better numer-

ical absorption.

The role of wavemaker geometry has an important influence on the absorption

characteristics. This can be seen contrasting the graphs for the four different

shaped wavemakers in Figure 4.7. It can be seen that regardless of control strategy

implemented, a cosh(3π) wavemaker displays better absorption characteristics at

frequencies of ω 6= ωp, thus yielding much broader graphs, Figure 4.7d. This

highlights the importance of considering both the geometry of the device and the

control strategy implemented.

4.4 Chapter conclusions

This chapter has shown that the absorption of incoming waves is sensitive to the

shape of the absorbing wavemaker, the control strategy used to implement the

absorption and also the choice of tuning frequency in the control strategy.

The absorption levels for three different wavemakers were presented using a com-

bination of different control strategies. The different control strategies considered

were; mass-spring-damping, spring-damping, mass-damping and damping. It was

shown that the best absorption, at frequencies between π rad/s and 3.5π rad/s,

was achieved with a hyperbolic cosine, cosh(ωs), wavemaker with control coef-

ficients tuned to a frequency of ωp = 3π using a mass-spring-damper control

system.
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Figure 4.7: Absorption characteristics by wavemaker tuned to ωp = 3π
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The author is not suggesting building a cosh(ωs) shaped wavemaker as it would

prove difficult. This shaped absorbing wavemaker, however, could be used as a nu-

merical boundary condition to deal with unwanted wave reflections in numerical

wave tanks, offering an alternative to other methods that can be computation-

ally intensive and the potential for improved results, especially if coupled with a

numerical beach in a similar manner to Clément (1996).

For wave absorbers acting in surge, it has been shown that there are differences

between using mass-damping, damping-spring and mass-spring-damping coeffi-

cients to implement complex conjugate control. All achieve optimal absorption of

Pu/Pmax = 1, at the chosen frequency of ωp but, absorption levels differ at frequen-

cies other than the tuned frequency. This highlights the importance in choosing

what control strategy to choose and include in any wave absorbing device. All

of the reactive control options are sensitive to the choice of tuning frequency

ωp adding another variable for consideration. This could have relevance to any

surging wave energy converter that makes use of reactive control.

Furthermore, if the absorption of incoming waves is implemented using real con-

trol, there is little discernible difference in the absorption efficiency, ξ, upon chang-

ing the tuning frequency, ωp, for all wavemaker shapes. A control strategy using

just a real control coefficients is insensitive to the tuning frequency. Better returns

on absorption levels could be gained if design efforts concentrated on the shape

optimisation as opposed to power-take-off optimisation.

The levels of wave energy absorption by a device is intrinsically linked to the

control of the device. The control of wave absorbing devices is implicitly linked

to its hydrodynamics, vis-à-vis the geometry of the device. These results have

shown that the levels of absorption can differ depending on the choice of control

frequency and increased levels of absorption can be achieved if the geometry and

control strategy are considered and optimised concurrently.

There are limitations to this study. Displacement limits have not been considered

and the amount of absorption reported in Figure 4.7 would be an over estimation

at the lower range of frequencies. The response times of the paddles was also

neglected, this would have resulted in an over estimation of absorption at higher

frequencies. The definite integrals chosen for absorption efficiency, ξ, were based

upon frequency limits in the 1/100th scale tank at Edinburgh, so the concerns

over displacement limits and motion response should be diminished.
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Another consideration is that for the absorption efficiency, ξ, it is implicitly as-

sumed that all frequencies occurs in equal amounts. This is not the case and more

tailored results could be achieved if the absorption efficiency is weighted against

the wave spectrum in the flume. As there are large differences between each wave

spectra in a flume, an assumption would have to be made as to the spectral shape

etc. Instead of doing so, the method of integration without weighting is used. It is

thought that if spectral information was available, the geometry and the absorp-

tion coefficients could be chosen in concurrence and best results would be seen

for the hyperbolic cosine wavemakers.



Chapter 5

Quality assurance of CFD

simulations

Computational fluid dynamics (CFD) is a very powerful tool. It can be used to

predict fluid flow characteristics accurately and precisely. CFD can model single

phase flow, multi-phase flow, free surface flow, fluid-structure-interactions, ther-

mal flow, sediment transport to name but a few and the range of applications

for CFD is continually growing. Originally, CFD solvers were only accessible to

those who were fluent and adept in computer programming languages, therefore

CFD was only primarily used by experienced users and academics. The advent of

commercial CFD codes with their user friendly GUIs opened the world of CFD to

all engineers and scientists. Undergraduate engineers can, at the click of a button,

analyse the fluid flow over a backward facing step, or predict the aerodynamic

drag force acting on high speed trains. Aeronautical engineers used CFD exten-

sively in the design of the new Airbus A380, resulting huge economic savings as

they avoided costly large scale wind tunnel testing. Now, engineers and devel-

opers in the wave energy sector are looking to CFD to solve some of their more

complex problems, that the potential flow codes cannot model accurately.

The rise of commercial CFD codes has been proved an invaluable design tool

for the engineer, but it has also fraught with danger if used incorrectly. CFD

software can be applied to many complex fluid flow problems, but the danger is

that it always gives an answer, correct or otherwise. While this has always been

the case, when CFD codes were written using a relatively inaccessible computer

programming language, the more discerning users and academics could spot po-

tential misuse issues and rectify them. Their good engineering judgement was

based upon experience obtained via trial and error, with the emphasis on the

latter. New users to CFD, without a strong understanding of how the CFD solver

or methods work, will be presented results (invariably with colourful pictures)

67
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and could potentially take them as fact with out critically analysing them.

Due to the dramatic rise in CFD usage, several well known journals, such as

the ASME Journal of Fluids Engineering and all AIAA journals have enforced

mandatory use of more formal methods for evaluating errors and presenting quan-

tified bounds on uncertainty in order to increase the credibility of computational

results.

This chapter briefly discusses the underlying concepts behind CFD, making ref-

erence to free surface modelling. A far more detailed analysis, than the present

author could give, discussing CFD, numerical methods and its wide ranging ap-

plications can be found in the countless amount of books on the topic. Much of

the understanding and theory presented in this chapter was obtained from under-

graduate and postgraduate books such as; Anderson (1995); Ferziger and Perić

(2002); Versteeg and Malalasekera (2007) and the user manuals from the codes

that will be used in Chapter 6, ANSYS CFX and FLOW3D.

As opposed to the theory behind CFD, the emphasis for the majority of this

chapter focus on quality assurance and on errors in CFD; how they arise and

how to quantify the them. The topics of verification and validation of numerical

results have been around for quite some time, but only recently have started to

gather pace and acceptance amongst the academic community. This discussions

in this chapter will follow Roache (1998), to which a similar approach has been

adopted by more recent authors (Oberkampf and Roy, 2010).

5.1 Fluid dynamics and CFD

For most of the twentieth century naval hydrodynamics, and more recently wave

energy hydrodynamics has been limited to the two realms of theory and physical

experiments. Both of these methods of fluid flow analysis are limited through

scope, cost and size of facility. The advent of high speed digital computing has

brought with it a new dimension for analysing fluid flows, that of numerical

modelling.

CFD is one specific type of numerical modelling that can be used to analyse

fluid flow problems. At the core of CFD are the Navier-Stokes equations which

define any single-phase fluid flow. These are a very powerful set of equations

that describe the motion of fluid substances very accurately over a wide range of
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applications from; ocean currents, pipe flow, flow around airfoils, weather models

and star motion in a galaxy to name but a few. However, a general solution to

the Navier-Stokes equations have thus far eluded mathematicians and physicists

and as a result, CFD modellers obtain approximate solutions to these equations

using various numeric methods.

In the the marine energy sector, indeed the wider coastal engineering sector, many

researchers have opted for a simplified version of the Navier-Stokes equations. In a

lot of studies, the fluid being modelled is assumed to be irrotational and inviscid,

thus reducing the Navier-Stokes to a potential flow problem governed by the

Laplace equation. Potential flow problems are a lot quicker to solve, relatively

robust and produce adequate solutions for a range applications. The assumption

that the flow is inviscid and irrotational is overly simplistic and means that viscous

loses cannot be modelled and there certain limitations regarding what kind of fluid

flow can be properly represented. CFD is not limited by these assumptions and

can model the underlying physics of the problem more closely than a potential

flow solver. It also allows for the possibility to model types of fluid flow that

potential flow simply isn’t capable of modelling, such as breaking waves.

The largest draw back to using CFD solvers is computational time. Solving the

Navier-Stokes equations accurately can prove excessively time consuming. While

CFD might offer a huge range of data within its results, experimental scale models

might produce the desired results quicker and cheaper. In order for CFD to be of

real use to the design engineer, it needs to be less expensive than physical testing

and operate on similar time scales. The progress being made with multi-processor

computing has meant that CFD now offers a practical design tool for the engineer

to be used in conjunction with the experimental facilities.

5.1.1 Fluid equations of motion

All CFD codes, bespoke, commercial or otherwise are based upon the same fun-

damental governing equations of fluid dynamics. The basic equations of fluid flow

are three conservation laws:

1. Mass is conserved (Continuity equation)

2. Momentum is conserved (Newton’s second law)

3. Energy is conserved (First law of thermodynamics)
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Continuity equation

The continuity equation ensures that mass is conserved and states that any mass

entering a system is equal to that rate of mass that leaves the system. For a

compressible fluid the differential form is:

∂ρ

∂t
+∇ · (ρu) = 0 (5.1)

where, ρ is the fluid density and u the flow velocity.

Momentum equation

Newton’s second law is a fundamental law of physics that states that the net force

on a fluid element is equal to the mass times acceleration of the element F = ma.

For a fluid system, this can be compactly represented as (Gretton, 2009):

ρ
Du

Dt
= ∇ · τij. (5.2)

The first term on the left hand side is the material derivative and τ is the stress

tensor which is composed of the pressure and viscous terms,

τij = −pδij + τv
ij (5.3)

where, p is the pressure, δij represents the Kronecker delta function and τv
ij rep-

resents the viscous forces, which is composed of both normal and shear forces.

Substituting Eq. 5.3 into Eq. 5.2 gives:

ρ
Du

Dt
= −∇p+∇ · τv

ij. (5.4)

Assuming that the fluid is Newtonian, i.e. viscous stresses are linearly related to

strain rates, gives an expression for the viscous forces:

τij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ∇ · u (5.5)

where λ is the bulk viscosity and µ is the ordinary coefficient of viscosity.

Substituting Eq. 5.5 into Eq. 5.2 results in the familiar Navier-Stokes equations
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for a compressible viscous flow

ρ
Du

Dt
= −∇p+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ∇ · u

]
. (5.6)

If the flow is assumed to have both constant density and viscosity, a simpler

representation is arrived at:

ρ
Du

Dt
= −∇p+ µ∇2u. (5.7)

Energy equation

The third fundamental equation governing the laws of fluids is the conservation

of energy. The conservation of energy is more commonly known through the first

law of thermodynamics; energy can be transformed, but not created or destroyed.

For a fluid this is represented as

ρ
De

Dt
= ∇ · (k∇T )− p∇ · u+ τv

ij

∂ui
∂xj

(5.8)

where, e is the internal energy, p is the pressure, T is the temperature and k is

the thermal conductivity.

Equations of state

At present there are five coupled equations with seven unknowns, resulting in an

indeterminate set of equations. In order to obtain closure, two more equations are

required. The ideal gas laws are used to provide to two extra equations in order

to solve the set of equations governing fluid motion

p = ρRT (5.9)

and the assumption of constant specific heat (at a constant pressure) gives

h = cpT. (5.10)
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5.1.2 Discretisation methods

The fluid flow being solved for by CFD codes takes place over a continuous region

or continuum. Within this continuum the fluid equations of motion, the Navier-

Stokes equations, apply. But computers can not solve the continuous governing

partial differential equations. Instead the continuum is broken up, or discretised in

to finite temporal and spatial portions. There are a number of different techniques

to discretise the governing equations, but the objective of all is the same; to

turn a calculus problem into and algebraic problem. There are different methods

used to discretise the spatial volumes such as: finite volume, finite difference and

finite element. The mesh or grid upon which the equations are discretised can be

structured, unstructured and there are also different methods used to discretise

the inviscid terms such as central schemes, flux vector splitting, flux-difference

splitting, upwinding, ENO, WENO. The fact that a continuous set of equations

are solved as a discretised solution means that errors will invariably be introduced.

These discretisation errors will be discussed in more detail in Section 5.3.

5.1.3 Free surface modelling

The free surface is of particular interest to engineers using CFD to analyse hy-

drodynamic flows. In the marine environment, the free surface represents the

interface between the water and the air. This can be either simply defined where

there is a sharp change at the interface, such as still water, or more complex if

we consider breaking water waves with air entrainment.

The main difficulty in dealing with free surfaces is that the position and shape of

the free surface is not known, other than at the initial time; its location at later

times has to be determined as part of the solution.

The free surface boundary conditions have been briefly discussed in Section 3.1.

To recap, the kinematic condition requires that there is no flux through the sharp

boundary separating the two fluids. The dynamic condition states that the free

surface does not support any pressure differences across the interface and that

the forces acting on the fluid at the interface remain in equilibrium. In many

engineering scale applications, normal stresses and surface tension effects can be

neglected.

Implementation of these boundary conditions is not that simple. As mentioned,

the position of the free surface is unknown a priori and must be computed as part
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of the solution. Therefore only one of the boundary conditions can be implemented

at the free surface and the other has to be used to locate the interface. This has

to be done iteratively, making it a computationally intensive task (Ferziger and

Peric, 1999).

There are many different methods employed in CFD to resolve the free surface

but most of these can be categorised according to two groups; interface tracking

and interface capturing.

The first is interface tracking, where a sharp interface is maintained by following

its motion. The mesh is adapted to the position of the free surface at each time

step. Therefore, one of the boundaries is, by default, the free surface where the

boundary conditions can be applied.

The other option is interface capturing. These methods can be implemented on

a predetermined fixed grid. There are three main techniques in this category,

Marker-and-cell, Volume of fluid and level set techniques.

Marker-and-cell

The marker-and-cell (MAC) method, proposed by (Harlow, 1965), introduces

massless tracer particles at the free surface and are tracked throughout the cal-

culation. While this method can cope with non-linearities, it is computationally

expensive, especially in three dimensions.

Volume of fluid

The volume of fluid (VOF) approach was first introduced by Hirt and Nichols

(1981). The VOF method consists of three ingredients; a scheme to locate the

surface, an algorithm to track the surface as a sharp interface moving through a

computational grid and a means of applying boundary conditions at the surface.

Two fluid phases are considered to make up one single fluid across the grid. Each

grid volume is assigned a fluid fraction function equal to 1.0 in the fluid and

0.0 outside the fluid, i.e. air void, Figure 5.1. The free surface is then identified

by the region of rapid change of this volume fraction. This approach, or similar,

is adopted by many commercial CFD codes such as, ANSYS-CFX, cd-adapco

STAR-CCM+ and FLOW3D. Codes that employ this method to resolve the free

surface generally differ in the way that the shape of the interface is approximated;

via simple line interface calculation (SLIC), piecewise linear interface calculation
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Figure 5.1: Typical values of the Volume of Fluid near the free surface (Barkhu-
darov, 2004).

(PLIC) and least squares methods, but the underlying concept is the same. This

approach is more efficient than the MAC scheme and can be applied to complex

free surfaces and breaking waves (Ferziger and Peric, 1999).

Level set method

Another class of interface-capturing methods is based upon the level set technique

presented by Osher and Sethian (1988). Level set methods are conceptually sim-

ple. Here the level set function is initially defined in each cell as the distance from

the free surface, positive in one direction, negative in the other. This function,

which is zero on the free surface is tracked because it smoothly changes across the

interface. Level set methods are relatively easy to implement and accurate under

certain conditions. Issues arise with this method where there is high vorticity or

where the interface is significantly deformed and in these flow regimes level set

methods can suffer from loss of mass/volume.

Other methods for tracking the free surface include Lattice Boltzmann method,

Front-tracking methods and shock-capturing methods.
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Figure 5.2: The level set function. Here the red front is the zero level set as it
represents the collection of points that are at height zero

5.2 General errors and uncertainty in CFD

“We know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say we know
there are some things we do not know. But there are also unknown
unknowns, the ones we don’t know we don’t know” - D. Rumsfeld

Computational fluid dynamics covers a very wide scope of fluid flow processes.

The majority of these flows are governed and well described by the Navier-Stokes

equations. As discussed previously, obtaining a direct analytical solution for any-

thing other than the most simple of cases is not possible. To obtain a solution,

these governing continuous equations need to be replaced with a discrete repre-

sentation and numerical solutions to these approximate equations can be obtained

using a computer. This discretisation process introduces errors compared to the

solution of the continuous set of equations. Further errors are introduced if the

chosen governing equations don’t adequately represent the fluid flow of interest.

A prime example of this is in turbulence modelling when performing a viscous

flow simulation. In addition to errors introduced while obtaining a numerical so-

lution, errors can also be introduced by the user either by incorrectly defining the

problem or analysis and interpretation of the results.

This subject of errors in CFD has been discussed by several authors and a best

practice guide, by the European Research Community on Flow, Turbulence and

Combustion (ERCOFTAC, 2002) classify errors and uncertainty under seven dif-

ferent sources;

• Model error and uncertainty

• Discretisation or numerical error

• Iteration or convergence error

• Round-off error
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• Application uncertainties

• User errors

• Code errors

The following subsections will discuss some of these errors, or known unknowns,

in more detail and discus how to quantify the error bounds associated with them

where possible. This will breed confidence in any results presented using a nu-

merical model.

5.2.1 Model error and uncertainties

The AIAA (1998) make the semantic distinction between error and uncertainty.

They present the following definitions:

Uncertainty : A potential deficiency in any phase or activity of the
modelling process that is due to the lack of knowledge.

Error : A recognisable deficiency in any phase or activity of modelling
and simulation that is not due to lack of knowledge.

Here the key difference between the two is the lack of knowledge.

Modelling errors and uncertainty arise due to solving the wrong equations. They

are defined as being the difference between the real flow and the exact solution

of the model equations. The most recognised error of this form are as a result of

turbulence modelling assumptions. For turbulence modelling it is well known that

unrealistic results will be obtained if the incorrect turbulence model is chosen. The

fact that there are so many different turbulent models used and recommended for

different flow conditions is testament to this.

5.2.2 Discretisation or numerical error

Discretisation errors arise because we are obtaining a discrete numerical approxi-

mation to the continuous equations we are trying to solve. They are defined as the

difference between the exact solution of the modelled equations and the numerical

solution on a mesh of finite grid points. It is due to the fact that finite differences

are used to represent exact derivatives. The greater the number of grid points,

the lower this error. As the number of grid points is increased the discretisation

error will tend to zero at a rate determined by the order of the numerical method

used.
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5.2.3 Iteration or convergence error

These are errors that arise due to the difference between a fully converged solu-

tion on a finite number of grid points and a solution that is not fully converged

(MARNET, 2002). If the iterative process was allowed to continue indefinitely,

these errors would be zero. Realistically this is not possible as modellers have

time constraints and convergence limits are set to tolerances on accuracies. It is a

pragmatic balance between these time constraints and solution accuracy require-

ments.

5.2.4 Round-off error

Also referred to as computer round-off error. Computers only have a limited

number of digits available for storing a given value, typically numbers are stored

with 16, 32 or 64 bits. Round-off error is the difference between the calculated

approximation of a number and its exact mathematical value.

5.2.5 Application uncertainties

Errors can arise due to the problem being complex and an exact definition of

the problem is not possible. These uncertainties include, but are not limited to,

geometry definition, boundary conditions or whether the flow is steady/unsteady.

5.2.6 User errors

User errors can be introduced at any stage where the user has to interact with

the code, geometry generation, meshing, pre-processing or post-processing. These

arise due to mistakes or carelessness by the user and it is hoped that these errors

will reduce in line with the level of experience of the user.

5.2.7 Code errors

Code errors are often referred to as programming errors or “bugs”. These are

unintentional programming errors in the implementation of models or compiler

errors on the computer hardware. Often, these can be difficult to find. The primary

method of detection is through verification and validation of the code.
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5.3 Verification and Validation

Clearly, there is a large variety of error and uncertainty associated with any nu-

merical analysis, CFD in particular. Unless the errors and uncertainty can be

quantified and error bounds placed upon the results, CFD should be treated with

the utmost of scepticism. This raises a very important question, how can you effec-

tively determine the magnitude of the error or the bound of the uncertainty? This

question has been on-going for nearly 100 years, ever since Richardson (1910) pub-

lished his paper on h2 extrapolation, now more commonly referred to as Richard-

son Extrapolation. With the recent advancement in computing power, there has

been an increase in the amount of research conducted using numerical models.

The research community and journal editors are more keen than ever to ensure

that error bounds are placed upon these numerical results, as an experimentalist

does physical tests. But still, no consensus has been reached on the methods of

performing this analysis (Freitas, 2002).

Many authors propose that a numerical code should be subjected to two phases

of analysis in assessing the quality of a CFD model, verification and validation

(Aeschliman et al., 1995; Roache, 1998; AIAA, 1998; Ferziger and Peric, 1999;

Freitas, 2002; MARNET, 2002; Celik et al., 2008; Oberkampf and Roy, 2010). In

everyday parlance, both of these nouns are synonyms, but in the field of numerical

modelling they are quite different. The broadly agreed definitions of these terms

are (AIAA, 1998)

Verification: The process of determining that a model implementation
accurately represents the developer’s conceptual description of the
model and the solution to the model.

Validation: The process of determining the degree to which a model
is an accurate representation of the real world from the perspective
of the intended uses of the model.

These have been succinctly put by Blottner (1989) as:

Verification: Solving the equations right.

Validation: Solving the right equations.

Verification and validation is often referred to in shorthand as V&V.
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5.3.1 Verification

Verification is only concerned with mathematics, it is not an endorsement of the

physical or mathematical model. Its aim is to identify and quantify the errors in

the model implementation and the solution. Verification of codes can be broken

down into two smaller subsets; verification of codes and verification of calcula-

tions. Roache (2004) suggests that the commonly used shorthand V&V is defective

because it suggests that this process only involves two not three subjects and a

more complete shorthand of V2V should be used, to recognise more accurately

the extra verification distinction.

Verification of codes

Verification of codes is concerned with whether or not the model is correctly

coded. The objective of verifying the code is to find and remove any coding

errors, bugs or code misuse. Roache (2004) uses the example of a code that uses a

perverse mathematical method to trajectory of a projectile to demonstrate this.

If a numerical code is used to calculate the trajectory of a projectile or satellite

using an inverse-cube law, and this is stated in the code’s documentation, and as

long as there are no coding errors or bugs then this code could pass the level of

V2V.

If the source code is available to the end user, the method of manufactured solu-

tions (MMS) is possible to implement to ensure a strong verification of the code

(Roache, 2002). If however a commercial CFD code is being used, the source code

will invariably be inaccessible to the end user and no verification of codes will

be possible. Here a lot of trust is placed with the developers to have previously

conducted extensive verification of their code in-house to ensure that no “bugs”

exist. As such, more confidence can be had in codes that have been developed

over long periods of time, allowing for the verification of codes through usage.

ANSYS CFX is a widely used code and has undergone strenuous verification in

the past. One such example is published by Bergström and Gebart (1999) who

estimated the numerical accuracy of CFDS-Flow3D1 (AEA Technology, 1994).

1. Confusingly, this code is now known as CFX and FLOW3D is a completely different code,
both of which will be used in Chapter 6
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Verification of calculations

Verification of calculations looks at the errors introduced due to insufficiently

resolved spatial and temporal discretisation and insufficient convergence errors. As

the partial differential equations in a CFD code do not have an analytical solution,

a numerical solution involving discretisation is needed. If the discretisation is

sufficiently fine, these errors can be reduced to zero (or at least to a level of

round-off error) but this would increase the computational cost of running the

simulation. Discretisation will introduce errors, it is up to the the end user to

decide what level of accuracy or acceptable error estimate is adequate or needed.

In order to asses the spatial discretisation error in a simulation, a grid convergence

study can be conducted. Results from two or more grids of different resolutions

are compared and the spatial discretisation is assessed based upon the relative

change of a value after grid refinement or coarsening. A more thorough form of

verification of calculations will be presented in Section 5.3, where three grids will

be used to assess the level of convergence. The observed order of convergence,

error bands and grid convergence indices can then be determined.

5.3.2 Validation

Validation is concerned with the error between the numerical model and the

physical real world. Here the code is not being validated, but rather the model

on which the code is based. It is checking to see if the governing mathematical

equations chosen were the correct ones to represent the physical reality. One

generally only validates a code for specific applications. However, if a code has

been validated for a range of similar cases, one could interpolate between nearby

problems and consider the code validated for a range of parameters. Extreme

caution should be taken if extrapolating from nearby problems.

If we revert back to the example of a numerical code using an inverse-cube law

(Roache, 1994), as discussed, this could in theory pass the verification process. It

could potentially report a false positive from the validation process if care is not

taken to conduct a rigorous validation test. If the validation process compared the

numerical results to a small projectile (e.g. a rock being thrown) the numerical

model could possibly produce relatively OK results, this is because the model

was not stressed enough. If however, this numerical code was used to predict the

trajectory of a satellite orbiting the Earth, the inadequacies of the model would
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quickly show up and it would fail the validation procedure.

There could be the scenario in which the numerical model is only to be used

in calculating the path of a small projectile. It has been validated to a certain

percentage for this usage. As long as the problem being modelled is very similar

to the validation case, certain degree of confidence can be attached to the results.

This highlights the importance of validating numerical results for the specific

use wherever possible. Interpolation between previous validation is possible but

the end user needs to appreciate that a large caveat should be attached to any

extrapolated assumptions of validation.

5.3.3 Qualification

Qualification is another consideration, often ignored in the discussions, that needs

to be considered in conjunction with the validation of the numerical code. This

is where sound engineering judgement is employed do decide upon what levels

of accuracy are needed for the numerical results. On occasion swift results and

characteristic information are all that is required to provide rough diagnostic data

and this will take precedence over out-right accuracy.

It could be considered that there are three different levels of accuracy required

from a CFD calculation,

1. Supply diagnostic information,

2. Provide incremental data,

3. Generate baseline data for the performance model database.

Each of these will have subjective threshold errors when conducting a validation

study.

5.3.4 Examining Grid Convergence

Roache (1998) presented a method to examine the spatial convergence of a sim-

ulation and a method for determining the formal discretisation error in a CFD

simulation2. This method calculates a metric referred to as a Grid Convergence

Index (GCI) that places an error bound on the obtained results. This method

has been adopted by the National Project for Application-orientated Research in

2. Interested readers who cannot obtain the book should consult Roache (1994) and Roache
(1997), where this research is outlined in parts
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CFD (NPARC), a partnership between NASA and the US Air-Force. This method

also sets the criteria and procedure for estimating and reporting of uncertainty

in CFD for submission to the Journal of Fluids Engineering (Celik et al., 2008)

and all AIAA journals (AIAA, 1998). The research presented in the thesis herein

will be following the method outlined by Roache (1998) and the layout proposed

by the Journal of Fluids Engineering (Celik et al., 2008).

Richardson Extrapolation

The GCI method is based up on a method for estimating discretisation error

first proposed by Richardson (1910), more commonly known as the Richardson

Extrapolation (RE), “h2” method or “iterated extrapolation”. RE allows for a

higher-order estimate of the continuum value from a series of lower-order discrete

values. In essence, it predicts what a measured value will have if the grid spacing

was zero. This method has its limitations but it is still recognised as being one

of the most reliable predictors of numerical uncertainty (Celik et al., 2008). The

discrete solutions for a quantity f are assumed to have a series representation:

f = fext + g1h+ g2h
2 + g3h

3 + . . . (5.11)

where, Fext is the exact solution, h is the grid spacing and the functions g1, g2

etc. do not depend on any discretisation. For a second order method, g1 = 0.

If two separate discrete solutions f1 and f2 are obtained from two different grids,

a fine grid with spacing of h1 and a coarser grid with spacing of h2, the leading

order error terms can be eliminated. The resulting continuum value based upon

RE is given as:

f 21
ext =

h2
2f1 − h2

1f2

h2
2 − h2

1

+ H.O.T. (5.12)

where, H.O.T. are higher order terms (Roache, 1998).

Omitting higher order terms and defining the grid refinement ratio r21 = h2/h1

then the RE can be generalised to pth order as

f 21
ext
∼= rp21f1 − f2

rp21 − 1
(5.13)

∼= f1 +
f1 − f2

rp − 1
(5.14)

The difference between f1 and fext could be considered as an error estimate but
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careful consideration should be paid to the assumptions and caveats attached

to fext. In Eq. 5.14, the second term on the rhs can be considered as an error

estimator of f1 (NPARC, 2010). Presenting this as an estimated fractional error,

E1, for a fine mesh solution gives, (Roache, 1998)

E1 =
e21
a

rp − 1
(5.15)

where the approximate relative error, e21
a , is given as,

e21
a =

∣∣∣∣f2 − f1

f1

∣∣∣∣ . (5.16)

The estimated fractional error, E1 is a good approximation to the discretisation

error of the grid solution if that solution is of reasonable accuracy i.e. E1 � 1

(Gretton, 2009). This metric is far more useful than the relative error, e21
a as it

incorporates both the refinement ratio, r and order, p.

Another metric can also be used with the Richardson extrapolation, the extrapo-

lated relative error of the fine mesh solution, e21
ext, comparing the solution on the

fine mesh to the Richardson’s extrapolated value can be presented as

e21
ext =

∣∣∣∣f1 − fext

fext

∣∣∣∣ . (5.17)

Grid convergence index for the fine grid solution

Roache (1998) suggests the need for a consistent method for reporting of grid

convergence studies to estimate the discretisation errors associated with a calcu-

lation. This would allow for comparison between methods that use higher order

advection schemes and different grid refinement ratios, r. While the error esti-

mator, E1 is based upon a rational and consistent theory, it is not a bounded

estimate of the error. This value of E1 does not provide a very good confidence

interval, it could be equally over optimistic as conservative. Roache (1998) argues

that what engineers and scientists want is a practical level of confidence. They

are looking for a set tolerance on the accuracy which may be exceeded, akin to a

statisticians 2σ confidence interval.

Most engineers would consider that e21
a would be a reasonable error band, assum-

ing that the solution was indeed in the asymptotic range of convergence. If the



5.3. Verification and Validation 84

results were obtained using a second-order method with a grid refinement ratio,

p = 2 and r = 2 and the resulting E1 is only 1/3 of e21
a .

Roache (1998) provides a method for approximately comparing e21
a obtained using

any value for p and r to the expected results from a grid doubling using second-

order method. The relation is based upon equality of the error estimates. The

GCI is defined as being equivalent to the value of e21
a that would produce the

same E1 with r = 2 and p = 2 as the value of E1 calculated with the actual

values for e21
a , r and p form the grid convergence study. It is expressed as:

GCI21 = Fs
|e21
a |

rp − 1
(5.18)

It can be noted that for a grid-doubling with a second-order method, the de-

nominator is equal to 3, in Eq. 5.18 and we obtain GCI = e21
a . Thus Fs can be

considered as the factor of safety over the Richardson error estimator, E1.

Choice of Fs

The coefficient value of the factor of safety is an arbitrary number based on

rational and objective judgement. Arguably it could be “1” or “3” or any where in

between. Roache (1998) recommends that for convergence studies using two-grid

solutions a value of Fs = 3 should be used, but for studies with a minimum of

three grids used to demonstrate the observed order of convergence p on the actual

problem a value of Fs = 1.25 is recommended as being adequately conservative

(Celik et al., 2008; Roache, 1998)3.

Grid convergence index for the coarse solution - or Achieving the

asymptotic range

If there is a choice between a fine grid solution and a coarse grid solution, it would

be expected to report the fine grid GCI. However, if a large parametric study is

to be carried out, it might be desirable to use the coarser mesh. Then it is needed

to quantify the error for this coarser mesh defined as:

GCI32 = Fs
|e32
a |rp

(rp − 1)
. (5.19)

3. A more complete discussion on the choice of Fs can be found in Roache (1994) and Roache
(1998). Originally Roache recommended a Fs = 3 but subsequently decided that Fs = 1.25 was
more appropriate in certain occasions.
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This is useful to check if the solution lies in the asymptotic range of convergence,

GCI32 = rpGCI21 (5.20)

where, the ratio should be close to unity.

Extracting the observed order of convergence

The order of grid convergence is observed as being the difference between the

discrete solution and the exact solution,

E = f(h)− fext = Chp +H.O.T. (5.21)

where, C is a constant and h is some measure of grid spacing.

In theory, a CFD code that implements a second-order method should observe an

second-order of convergence, but the boundary conditions, numerical models and

grid stretching will reduce this order so that the observed order of convergence

will in fact be lower.

A direct evaluation of the observed order of convergence, p can be extracted from

three solutions using a constant grid refinement ratio, r = r12 = r23, where “1”

represents the finest grid.

p = ln

∣∣∣∣(f3 − f2

f2 − f1

)∣∣∣∣ / ln r. (5.22)

If the refinement ratio is not constant, the order of convergence can be extracted

as (Celik et al., 2008):

p =

(∣∣∣∣ln(f3 − f2

f2 − f1

)∣∣∣∣+ q(p)

)
/ ln r21 (5.23)

q(p) = ln

(
rp21 − s
rp32 − s

)
(5.24)

s = 1 · sgn(ε32/ε21) (5.25)

where, ε32 = f3 − f2 and ε21 = f2 − f1.
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Non-Cartesian or Unstructured grids

If an unstructured mesh is being used it may be difficult to obtain the value of the

grid refinement ratio, r. NPARC (2010) show that the effective grid refinement

ratio can be obtained as:

reffective =

(
N2

N1

)1/D

(5.26)

where, N is the number of grid points and D is the dimension of the flow domain.

The Journal of Fluids Engineering suggest a similar approach, showing that for

a three-dimensional problem, a representative grid size, h can be obtained as:

h =

[
1

N

N∑
i=1

(∆Vi)

]1/3

(5.27)

or in two-dimensions as:

h =

[
1

N

N∑
i=1

(∆Ai)

]1/2

(5.28)

where, ∆Vi is the volume, ∆Ai is the area of the ith cell, and N is the total

number of cells used. The effective refinement ratio can then be obtained from

r = hcoarse/hfine.

The whole problem with the world is that fools and fanatics are always
so certain of themselves, but wiser people so full of doubts. - Bertrand
Russell



Chapter 6

Computational fluid dynamic

results and discussion

The advantages of using computational fluid dynamic (CFD) commercial codes,

that solve for viscous terms and account for wave breaking are highly attractive

to the wave energy sector. Studies have been conducted investigating merits of

using CFD codes both as numerical wave tanks and for calculating wave loading

in extreme waves on wave energy converters, but the studies published have not

concentrated on the fidelity of the waves generated and none have conducted a

formal grid convergence study on commercial solvers.

Extreme wave loading has been investigated using both commercial and aca-

demic codes. Westphalen et al. (2008, 2009) compared CD-Adaco’s STAR-CCM+

to ANSYS CFX and reported promising results for this application from both

commercial solvers. Wave height attenuation, down-wave of the inlet boundary

condition, was observed to occur for both solvers, noting that wave amplitudes

decreased monotonically down the numerical wave tank. This was reported to be

more pronounced for STAR-CCM+ than CFX, but as the waves involved were

extreme waves, the height attenuation was not considered to be an issue.

Bhinder et al. (2009a) conducted a joint numerical and experimental study on a

surging point absorbing wave energy device. Two commercial CFD solvers (CFX

and FLOW-3D) were used as the numerical codes. Both underwent a preliminary

investigation, examining how well they modelled progressive linear waves. Severe

wave height attenuation as the wave travelled down the flume, was reported for

CFX. This was attributed to numerical dissipation. FLOW-3D was reported to

model progressive linear waves adequately. Wave height attenuation is visible in

the published figures, but this was not discussed in the paper. This publication

was later followed up with a second paper using FLOW-3D to model the wave

87
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energy device (Bhinder et al., 2009b). Neither publications concentrated in detail

on the quality of the waves as more attention was paid to the comparison of

numerical forces against experimental measurements.

Wang and Zhao (2010) used FLUENT to model a 2D numerical wave tank. Here,

first order, second order and solitary waves are modelled. This paper did not

include a large discussion on the results, but it is clear from published figures

that wave height attenuation was present. Decreases in wave height measurements

down the flume of up to 50% were reported.

Lal and Elangovan (2008) performed a validation study for a flap-type wavemaker

using CFX. This publication concluded the the results were in good agreement

with wavemaker theory and stated that CFD simulations using CFX can effec-

tively replace physical wavemaking flumes for regular wave generation. These

conclusions are in contrast to the results presented where it is clear that there is

wave height attenuation within the numerical wave flume which was not discussed.

The quality of the waves produces was not analysed in detail and no formal grid

convergence study or error bounds were placed on the CFD results. This publi-

cation was later followed up with a similar validation study using a plunger type

wavemaker, again in CFX (Elangovan, 2010). Wave height attenuation is again

clear in the published figures but it is not discussed and the conclusions are that

CFX can adequately model plunger type wave makers and the associated radiate

waves. Elangovan and Sahoo (2010) published another study on the generation of

irregular waves in CFX. The figures presented in this publications were either, in

the time domain or frequency domain, so it is difficult to establish if wave height

decay was an issue. No thorough in-depth analysis of the results are conducted,

yet the publication concluded that it is possible to model irregular waves for a

given spectrum.

Silva et al. (2010) conducted a validation case comparing CFX and analytical

calculations. The numerical output from CFX was compared to first and second

order wavemaker theories. Good agreement was reported with errors in the region

of ±2.5%. The errors increased with progression away from the wavemaker. While

no formal grid convergence study was conducted, the informal investigation re-

ported best results for CFX with cell aspect ratios (vertical:horizontal spacing)

of ≈ 1 : 4 and suggesting the best time step was ≈ TP/100, where TP is the wave

period.

Several other studies have used CFD codes to model numerical wave tanks (Huang
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et al., 1998; Lin and Liu, 1999; Park, 2004; Wang et al., 2007; Causon et al., 2008;

Maguire and Ingram, 2009; Hu et al., 2009; Maguire and Ingram, 2010). None of

these studies have conducted a formal grid convergence study and the majority of

them are not concerned with the quality of the waves as a they are more interested

in the hydrodynamic response of the device being modelled.

There are conflicting reports from the literature regards what commercial CFD

solvers can or cannot model. Some studies conclude that commercial CFD solvers

are capable of modelling radiated free surface waves from a oscillating body, sug-

gesting that the numerical wave tank could replace the experimental wave tank.

Other authors report that wave height attenuation is persistent in commercial

codes but it is not an issue for concern. Others report that some commercial

codes are not suitable while different ones are suitable.

Wave height attenuation in commercial CFD VOF solvers appears to be an issue,

but this is not quantified. There are no studies at present that conduct a formal

grid convergence study similar to that mandated by Celik et al. (2008). There

is a lack of information on what solver options within certain codes are most

appropriate, what grid refinement is needs and what time steps result in optimal

results.

It is clear that there is a need to quantify formally the capabilities of commercial

CFD solvers in order to establish the range of applicability for each code and,

arguably more importantly, the limitations of the CFD solvers. There is anec-

dotal evidence that user expectations are unrealistic when it comes to CFD. It

is not always appreciated that commercial CFD codes were designed with spe-

cific applications in mind. CFD software companies have ensured that their codes

accurately model industries with the potential for greatest financial return. The

size of the wave energy market pales in comparison to the oil and gas, offshore,

coastal defence and aeronautical industries. As such, the wave energy sector hopes

to ‘piggy back’ of the advancements in free surface modelling due to the impetus

of these more lucrative offshore industries. The wave energy industry is concerned

with modelling radiated waves from oscillating bodies with a free surface. This is

a different problem to that of oil and gas, or ship building where they are more

concerned with diffraction forces than radiation forces. Before the wave energy

sector can use commercial CFD codes with confidence, the solvers need to be

verified and validated for the specific intended use.

This Chapter will perform a formal temporal and spatial verification study on
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two commercial CFD codes, concentrating upon free surface modelling capability

from oscillating bodies. It will take the most commonly used commercial CFD

code reported in wave energy research literature, ANSYS CFX and another code,

FLOW-3D which was reported as being the best commercial code for free surface

modelling. It will model the monochromatic radiated wave from an oscillating

wavemaker in a 2D wave flume and assess the fidelity of the waves produced.

A formal temporal and spatial verification procedure, according to Celik et al.

(2008), will be conducted on both codes. A validation case using CFX and linear

wavemaker theory will also be presented and the results and implications will be

discussed.

6.1 The numerical wave flume

The dimensions of the numerical flume is chosen to be similar to the physical

wave flume at the University of Edinburgh, and indeed many other hydrodynamic

laboratories around the world. In modelling the flume, the water depth of the

flume was set to 0.8m and the period of oscillation of the wavemaker set to 1s.

According to the dispersion relationship, Eq. 3.42, the wavelength can be obtained

as

λ =
g

2π
T 2 tanh

2πh

λ
, (6.1)

thus resulting in a wavelength ≈ 1.56m. Assuming deep water conditions, the

phase speed of the waves, c, is given by λ/T = 1.56m/s and the group velocity, is

half that, cg = 0.78m/s. The overall length of the wave tank was chosen as 15.6m,

equating to a non -dimensional tank length of 10λ.

The wave height in the flume is proportional to the stroke amplitude of the

wavemaker. For the verification study, a wave height of H = 8cm was selected,

typical for a flume of these dimensions, and the stroke amplitude of the wavemaker

was set according to the ratios described in Section 3.4.

It should be observed that a wave height of 8cm results in waves that operate in

the stokes second-order regime, Figure 6.1. This does break some of the underlying

assumptions of linear wave theory, upon which the stroke displacement to wave

height ratio was based, but linear theory is robust and is still used with physical

wavemakers with very good agreement (Ursell et al., 1960). Regardless of the

physics of the problem being solved, these results can be analysed for verification
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of descretisation errors, as this process is concerned with solving the equations

correctly, not with the real world accuracy of the results.

6.2 CFX

This section presents the verification and validation of results from the commercial

CFD code ANSYS CFX v12. This is an implicit, coupled, finite volume based

solver using the volume of fluid scheme for multiphase flow. The transient solver

was selected because the problem being modelled is inherently time varying. Other

solver options implemented were homogeneous multiphase, with a second-order

transient solver and coupled volume-fraction.

The flow was initialised using a steady state solution of the transient problem at

the initial time t = 0. This was necessary due to stability issues with the CFX

solver, particularly during the initial time steps. For the steady state solution,

the flow was initialised with all velocity components set to zero. The pressure

field in the water was set according to the hydrostatic pressure and pressure was

initialised as uniform in the air. The volume fractions of the water and air were

implemented using a step function, within the CFX expression language. The

volume fraction below the SWL was set to 1, water, and the volume fraction above

the SWL set to 0, air. The steady state solution was run for 100 iterations. Usually,

a steady state solution would be run until some residual convergence criteria was

met but, the for the steady state, the residuals plateaued at ≈ 1 × 10−4 and no

further convergence was observed. This could be due to the fact that the boundary

conditions were not introducing any mass or momentum into the domain and,

therefore the initial conditions were almost an exact solution to begin with and

there is no more opportunity for the solution to converge.

The results from the steady state solution were used to set the initial conditions

for the transient case. The total time for the transient run was set as 18s. This

was chosen to give an appropriate amount of time to analyse the progression of

the waves while keeping the computational time to a minimum.

All of the CFX problems were run on machines with Intel core 2 Quad CPU

at 2.50GHz processors and 8GB of RAM, unless otherwise specified. The prob-

lems were parallelised using local HP MPI and the the mesh was split using the

user specified partitioning direction. The best results were found partitioning the
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Figure 6.1: Validity ranges of various wave theories (Chakrabarti, 1987).
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mesh in the direction of the propagating wave, [1 0 0]. The sovler proved to be

more robust using this option, but the computational times were slightly longer

compared to the standard MeTiS partitioning option.

6.2.1 Generation of meshes

All meshes for CFX were generated using ICEM, a bespoke meshing programme

for ANSYS software. Overall the mesh is 10 wavelengths long (15.6m) in the x-

direction and two water depths high, h, in the y-direction (1.5m). This mesh is

extruded to a thickness of one cell in the z-direction, as this is a requirement by

the CFX solver to model quasi 2D problems. An overview of the coarse mesh is

shown in Figure 6.2.

The mesh consists of three distinct regions. The section closest to the wavemaker

is a region one wavelength long, where mesh motion in the solver is enabled. This

is required in order to implement an oscillating solid boundary, which is needed

to replicate a physical wavemaker. Next is a region four wavelengths long, exactly

the same as the first region only with mesh motion disabled. This is because the

mesh motion is inherently dissipative and could lead to unwanted damping of the

progressive waves. The third region is where the node spacing in the x-direction is

successively stretched up to a point where the spacing, ∆x, is larger than at least

half a wavelength. This is to act as a numerical dissipation zone where any waves

will be progressively damped out and, thus, avoid any unwanted wave reflections

from the far boundary wall. In this region the growth ratio of the cells was ≤ 1.10

as excessively aggressive stretching could lead to numeric reflections. This resulted

in a de-facto wave flume of five wavelengths long and a five wavelength damping

zone.

In order to capture accurately the free surface, a region of refined mesh with

decreasing node spacing is required at the interface between the air and water.

This region around the still water level (SWL) has a uniform node spacing in in

the y-direction. This region, with refined uniform mesh spacing, extends ±0.05m

from the SWL to ensure that the expected wave height of 0.08m would be captured

adequately. The region of air above the water is of little interest in this study and,

due to the exponential decay of the water partials such dense grid refinement was

not necessary at the bottom of the flume. This allows for a mesh with a smaller

node count and allowing for quicker solving times. Geometric stretching of node

spacing, ∆y, is enforced above and below the SWL, Figure 6.3.
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Figure 6.3: Close up of the mesh region beside the wavemaker showing the region
of uniform refinement and the grid stretching above and below this region.

6.2.2 Boundary Conditions

The boundary conditions imposed in this problem were: symmetrical boundary

conditions on both near and far vertical faces along the length of the flume (with

reference to Figure 6.2). No-slip wall conditions were imposed on both the far wall

(x = 15.6m) and the bottom of the wave flume. The wavemaker was represented

using an oscillating wall boundary condition. The wall velocity was set relative to

the prescribed mesh motion. The mesh motion was achieved through a specified

displacement in the x-direction, implemented via CFX expression language. The

displacement was sinusoidal with the amplitude set by Eq. 3.111 for a piston

wavemaker,
H

x0

= 4
(cosh (kh))2 − 1

2 kh+ sinh (2 kh)
. (6.2)

The amplitude of the sinusoidal displacement was ramped up over 2s. The upper

region of the mesh was set as an opening boundary, with entrainment option

selected for the mass and momentum option. However, the upper boundary for

the region next to the wavemaker was set as a non-slip wall. This is the upper

boundary at right angles to the moving paddle where the CFX manual suggests

that all open boundaries should be orthogonal to a moving mesh. In the case of

a bottom hinged flap, this would not be true as the paddle would be pitching.

Therefore this boundary was specified as a wall and not an opening. It extends a

distance of one wavelength into the domain and corresponds to the region where
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mesh motion is permitted. This would be analogous to a horizontal overhang next

to the wavemaker in a physical flume.

The total time for the simulations was selected as 18s. This was to allow for

the ramp up period of 2s, the waves to progress to the end of the 5λ tank1 and

then for a wave crest to travel the length of the flume, at the wave phase speed,

which takes 5s. Then an arbitrary extra second was included, taking the total

transient run time to 18s. As this tank is effectively 10λ in length, and the period

of oscillation is T = 1, the total run time of 18s will mean result in no wave

reflections measured at x ≤ 5λ within the chosen time duration.

6.2.3 Temporal Discretisation

A temporal discretisation study was conducted in order to analyse the effect of

time step selection on the results. The objective of this study was to ensure the

selection of an appropriate time step, that yielded accurate results, in the quickest

computational time.

If the time step chosen was too large, the CFX solver would perform too many

inner loop calculations. This is where the solver iterates through the solution at

one single time step in order to achieve convergence of the residuals. Throughout

the calculations the inner loop limit was set to ten iterations, thus too high a

time step and the solver would reach this limit and move onto the next time step

without achieving residual convergence. This results in both suboptimal results

due to lack of convergence and increased computational time due to too many

inner loop calculations. If the time step was too small, the inner loop iterations

would invariably only perform one iteration and move to the next time step with

fast residual convergence, but, there would now be an excessive amount of time

step calculations and the computation time would be unnecessarily large. Also,

the larger the number of time steps could risk the introduction of numerical round

off errors.

The time step was chosen with the Courant Friedrichs Lewy (CFL) condition

in mind. This number is used as a metric for explicit CFD solvers to analyse

the stability of the calculations. While CFX is an implicit solver, and the CFL

condition is a limiting factor for explicit schemes, choosing the time step based

upon the CFL still has its merits as it is a non-dimensional number based upon

1. (cg = λ/2T thus this equals 10s.)
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the time step, grid spacing and the speed at which objects travel through the

grid.

For a two dimensional case the CFL number can be calculated as (Apsley and

Hu, 2003),
ux∆t

∆x
+
uy∆t

∆y
= CFL (6.3)

where, ux is the maximum expected velocity in the x-direction, uy is the maximum

expected velocity in the y-direction, ∆t is the time step and ∆x and ∆y are the

grid spacings in x-direction and y-direction respectively. Generally, when choosing

the values of ux and uy, the maximum values of velocity are used. Care needs to

be taken with deep water waves as the phase velocity of the wave train is twice as

fast as the group velocity and, as a result, ux needs to be set to the phase velocity

of the waves, not the maximum particle velocity.

There is some discussion in the literature with regards the choice of stability

limit. Some authors suggest using only the maximum value from either the x

or y-directions (Hirt and Nichols, 1981), Apsley and Hu (2003) suggests using

the aforementioned 2D CFL number, Eq. 6.3 and Thomas (1995) uses both, but

suggests that Eq. 6.3 might be more conservative than necessary. For the study

herein, the more conservative value method will be used, i.e. Eq. 6.32.

Four different relative time steps were investigated during the temporal inves-

tigation. The temporal study was conducted on both the coarse and medium

meshes. It was advised to keep the calculated CFL number as low as possible,

but not lower than one (ANSYS, 2008). This was anecdotal, and needed to be

confirmed. The CFL numbers used in this study were: 4.4, 2.2, 1.1 and 0.55. The

corresponding time steps for these CFL numbers on the three meshes can be seen

in Table 6.1. As time is another physical dimension similar to space, the results

from a temporal convergence study can be analysed in a very similar manner

to a spatial grid convergence study (Roache, 1998). With four CFL numbers,

two convergence studies can be conducted, the first with CFL numbers 4.4, 2.2

and 1.1 and the second with CFL numbers 2.2, 1.1 and 0.55. The corresponding

convergence indices can be seen in Table 6.3 and Table 6.4.

The measurement of wave height, H, was chosen as the variable to be used in

2. For reference, the one dimensional CFL numbers would results in, CFLx: 1.28, 0.64, 0.32,
0.16; and CFLy: 3.12, 1.56, 0.78, 0.39. It can be seen that the y direction is limiting the time
step selection, this is due to the extra refinement needed near the free surface.
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Table 6.1: The time steps, in seconds, used to achieve a given CFL number on
the three successively finer grids

CFL Coarse Medium Fine

4.4 0.02 0.01 0.005
2.2 0.01 0.005 0.0025
1.1 0.005 0.0025 0.00125
0.55 0.0025 0.00125 0.000625

these convergence studies, but the overall trend was similar for other metrics

investigated, such as: wavelength, zero up-crossing point, wave peak, wave trough.

Time step selection

The choice of time step involves balancing accuracy and CPU time. The metrics

obtained from this temporal convergence study quantify the error introduced

through using a discretised time step and allow for an informed decision to be

made as to which time step is appropriate for the relevant end use.

Table 6.3 presents the results using a formal convergence index described in Chap-

ter 5. As discussed, the wave tank is de facto 5λ long and, as a result, four wave

heights can be measured using a zero down-crossing measurement. These four

wave height measurements are taken using three successively refined time steps;

CFL numbers = 1.1, 2.2, 4.4. These are then used to assess how refined the

solution is using the finest time step.

Table 6.3 shows good convergence between between CFL numbers of 2.2 and

1.1, reporting actual errors, e21
a , of less that 0.7% and a grid convergence index

GCI21
fine ≈ 0.1%. This indicates that good convergence is achieved using a CFL

number of 1.1 and reasonable results are also observed when using a larger CFL

number of 2.2. Absolute errors between the two time steps were observed as

ε21 ≈ 0.0005m.

Table 6.4 shows the metrics when using CFL numbers of 2.2, 1.1 and 0.55. Here,

oscillatory convergence is observed in the wave height measurement between CFL

numbers of 1.1 and 0.55.

This suggests that the CFL number of 0.55 is too small and that better, and

quicker results would be obtained using a CFL number between 1− 2. The exact

value is a matter of judgement. The absolute and relative errors between using a
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Table 6.2: Total CPU time to run a transient 18 second simulation on the
medium mesh using a quad core processor

CFL number Total CPU time1 Wall clock time2

4.4 8.621 x105 s 2.5 days
2.2 1.651 x106 s 4.8 days
1.1 2.021 x106 s 5.9 days
0.55 4.135 x106 s 11.9 days

1 Summed CPU time using four core processors
2 Total wall clock time

Table 6.3: Convergence indices for the temporal convergence study on the
medium mesh using CFL numbers of 4.4, 2.2 and 1.1 . The indices are given
for four waves, numbered one to four, based upon the zero down crossing of the
wave. Subscript index 3 represents the coarsest relative time step and 1 the finest.

1 2 3 4

f3 [m] 0.074 0.070 0.068 0.066
f2 [m] 0.077 0.073 0.074 0.071
f1 [m] 0.078 0.073 0.074 0.072

ε32 [m] -0.003 -0.003 -0.005 -0.005
ε21 [m] -0.001 0.000 -0.001 0.000

p 2.458 3.000 3.363 3.818

f21
ext 0.078 0.073 0.074 0.072

e21
a 0.71% 0.54% 0.70% 0.54%

e21
ext 0.16% 0.08% 0.07% 0.04%

GCI21
fine 0.2% 0.10% 0.09% 0.05%

CFL number of 1 or 2 can be seen in Table 6.7. If absolute accuracy is paramount,

a time step that results in a CFL number of 1.1 should be used. Table 6.2 shows

that a halving of CFL number results in roughly a corresponding doubling of CPU

solving time. This metric can be used to weigh up the options for the decision

making process between accuracy and computational expense.

Qualitatively, the convergence of the time step selection on the coarse mesh can

be seen in Figure 6.4 and, on the medium mesh in Figure 6.5. Both showing that

there is little discernible difference qualitatively between a CFL number of 1.1 or

2.2.
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Table 6.4: Convergence indices for the temporal convergence study on the
medium mesh using CFL numbers of 2.2, 1.1 and 0.55 . The indices are given
for four waves, numbered one to four, based upon the zero down crossing of the
wave. Subscript index 3 represents the coarsest relative time step and 1 the finest.

1 2 3 4

f3 [m] 0.077 0.073 0.074 0.071
f2 [m] 0.078 0.073 0.074 0.072
f1 [m] 0.077 0.074 0.073 0.074

ε32 [m] -0.001 0.000 -0.001 -0.000
ε21 [m] 0.001 -0.001 0.001 -0.002

p 0.689 1.405 1.1335 2.513

f21
ext 0.075 0.075 0.072 0.074

e21
a 1.16% 1.42% 1.79% 3.00%

e21
ext 1.92% 0.85% 1.19% 0.63%

GCI21
fine 2.36% 1.08% 1.47% 0.80%
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Figure 6.4: Free surface plot showing the water displacement from the SWL at
a time of 18s on the coarse mesh. Four time steps were selected, corresponding
to CFL numbers of 4.4, 2.2, 1.1 and 0.55 respectively.
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Figure 6.5: Free surface plot showing the water displacement from the SWL at
a time of 18s on the medium mesh. Three time steps were selected, corresponding
to CFL numbers of 4.4, 2.2, 1.1 respectively.

6.2.4 Spatial discretisation

As discussed in Chapter 5, it is essential that all CFD results undergo a spatial

verification process to quantify the errors introduced through solving a set of

continuous equations on a discrete grid. The methodology proposed by Roache

(1998), and subsequently adopted by NASA (NPARC, 2010) and the Journal of

Fluids Engineering (Celik et al., 2008) will be followed herein.

In order to extract the observed order of convergence, at least three different

grids with constant refinement ratios are needed. For this verification study, three

different scaled meshes were used referred to as: coarse, medium and fine. The

coarse mesh has twice the node spacing in both x and y-directions compared to

the medium mesh, and similarly, the medium mesh has twice the node spacing

in both x and y-directions compared to the fine mesh. Therefore, the refinement

ratio was constant at r = 2.

The absolute values for medium mesh were chosen based upon a preliminary

study detailed in Appendix A. This preliminary study chose initial mesh spacings

similar to that used in a publication by Gretton et al. (2010), who modelled

the fluid flow over a submerged hydrofoil. The preliminary study in Appendix A

suggested that the CFX results were more sensitive to the spacing in ∆x than

∆y. Thus, for the present investigation it was decided to reduce the spacing of
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Table 6.5: Grid refinement mesh spacing

Coarse Medium Fine

cells / λ 64 128 256
cells / H 16 32 64
Node Count 37842 142170 552178

∆x compared to Gretton et al. (2010).

As the wave flume domain being modelled has an aspect ratio of ≈ 1 : 10, and the

grid spacing in the x-direction is uniform, any extra refinement to ∆x will increase

the computational expense proportionally. A pragmatic choice of node spacing

for the medium mesh of 128 nodes/λ in the x-direction and 32 nodes/H in the y-

direction was decided upon. This specification of node spacing in the y-direction

is applicable in the region of refinement around the SWL, as mentioned, away

from this uniform region, the node spacing is grown in the y-direction (Figure

6.3). The coarse and fine meshes are coarsened and refined, by a factor of two,

versions of the medium mesh.

Table 6.5 lists the relative spacing for each of the three grids. The reason that the

total node count between the three meshes does not increase by exactly a factor

of four is due to the dissipation region at x ≥ 5λ. In this region, as opposed

to doubling the number of nodes in the x-direction for each successive grid, a

constant growth ratio was sought. Thus, the relative increase in node count going

from the coarse to the medium and the medium to the fine meshes did not result

in a quadrupling of nodes. In the region of interest, 5λ out from the wavemaker,

the scaling along both the x and y-directions increases by exactly a factor of two

and results in a factor of four increase in total node count.

Table 6.6 presents the grid convergence indices, using a CFL number of 2.2 and

wave height, H, as the metric of interest. The wave tank is five wavelengths long,

allowing for four wave measurements using the zero down-crossing values. The

observed levels of grid convergence vary between 1.15% and 4.54% depending on

which wave measurement is taken. Relative errors between the medium mesh and

fine mesh vary between 2.19% and 5.91%. The Richardson extrapolation error on

the fine mesh, detailing the error between the fine mesh and a hypothetical mesh

with zero grid spacing, reports errors between 0.19% and 3.50%. Observed orders

of convergence give values of p ≈ 1.54. This order of convergence compares well,

considering the second order implemented by the CFX solver, which in theory
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Table 6.6: Grid convergence indices for the wave height using a constant CFL
number equating to 2.2. The indices are given for four waves, numbered one
to four, based upon the zero down crossing of the wave. Subscript index of 3
represents the coarsest relative mesh and 1 the finest.

1 2 3 4

f3 [m] 0.071 0.067 0.064 0.059
f2 [m] 0.077 0.073 0.074 0.071
f1 [m] 0.079 0.076 0.076 0.076

ε32 [m] -0.006 -0.006 -0.010 -0.012
ε21 [m] -0.002 -0.003 -0.003 -0.004

p 1.753 1.045 1.878 1.483

f21
ext 0.080 0.079 0.077 0.078

e21
a 2.19% 3.86% 3.57% 5.91%

e21
ext 0.91% 3.50% 1.32% 3.19%

GCI21
fine 1.15% 4.54% 1.67% 4.11%

should result in a value of two. It is rarely the case that the observed order of

convergence will equal the order of the numeric scheme, as errors are introduced

through a number of different sources (Roache, 1998).

Table 6.7 details the same indices, but using a CFL number of 1.1. For this case,

the grid convergence indices are not as well behaved compared to a CFL number

of 2.2. Here, the observed order of convergence is erratic varying from 0.87 to

3.061. Both the relative errors and the GCI errors are larger using a CFL number

of 1.1 compared to 2.2. Analysing this further, and comparing the wave heights on

the fine meshes in Tables 6.6 and 6.7, oscillatory convergence in the wave heights

is observed. This would suggest that using a CFL of 1.1 on the fine mesh is too

small and that more reliable results can be obtained using a CFL of 2.2.

One dimensional refinement

A preliminary study observed that greater improvements in the free surface eleva-

tion occurred with refinement of mesh spacing in ∆x compared to ∆y (Appendix

A). The mesh for this preliminary study was based on a publication by Gret-

ton et al. (2010), who investigated the wave form behind a submerged hydrofoil.

This publication used a medium mesh with 50 nodes/λ in the x-direction and

40 nodes/H in the y-direction. This grid spacing resulted in high aspect ratios



6.2. CFX 104

Table 6.7: Grid convergence indices for the wave height using a constant CFL
number equating to 1.1. The indices are given for four waves, numbered one
to four, based upon the zero down crossing of the wave. Subscript index of 3
represents the coarsest relative mesh and 1 the finest.

1 2 3 4

f3 [m] 0.072 0.067 0.065 0.059
f2 [m] 0.078 0.073 0.074 0.072
f1 [m] 0.078 0.077 0.075 0.078

ε32 [m] -0.005 -0.006 -0.009 -0.012
ε21 [m] -0.001 -0.003 -0.001 -0.006

p 3.061 0.867 2.994 0.977

f21
ext 0.078 0.081 0.075 0.084

e21
a 0.81% 4.23% 1.58% 7.99%

e21
ext 0.11% 4.88% 0.23% 7.62%

GCI21
fine 0.14% 6.41% 0.28% 10.31%
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Figure 6.6: Time snap at 18s of the free surface showing wave height elevation
on the three different meshes; Coarse, Medium, Fine using a CFL number of 1.1
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Figure 6.7: Time snap at 18s of the free surface showing wave height elevation
on the three different meshes; Coarse, Medium, Fine using a CFL number of 2.2

Table 6.8: Computational times to solve for a NWT lasting 18s on three meshes,
each using a CFL number of 1.1

Mesh Total CPU time1 Wall clock time2

Coarse 3.492 x105 s 1.1 days
Medium 2.021 x106 s 5.9 days
Fine 1.684 x107 s 48.8 days

1 Summed CPU time using four cores
2 Total wall clock time

Table 6.9: Computational times to solve for a NWT lasting 18s on three meshes,
each using a CFL number of 2.2

Mesh Total CPU time1 Wall clock time2

Coarse 2.266 x105 s 0.7 days
Medium 1.651x106 s 4.7 days
Fine 1.233 x107 s 35.7 days

1 Summed CPU time using four cores
2 Total wall clock time



6.2. CFX 106

0 λ 2 λ 3 λ 4 λ 5 λ
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Distance along wave tank [m]

D
is

p
la

c
e
m

e
n
t

[m
]

Comparison between x and y directional refinements

 

 

64cel l /λ 32cel l /H 128cel l /λ 16cel l /H 128cel l /λ 32cel l /H

Figure 6.8: Plot showing free surface displacement on the medium mesh with a
coarsening in the x-direction and also in the y-direction.

around the SWL, higher than the recommended ratio of 1:3. The preliminary

study conducted an investigation in order to assess the sensitivity of the results

to one dimensional grid refinement. The results showed that the free surface ele-

vation was more far sensitive to ∆x refinement than ∆y refinement and nearly all

of improvement in the results came from refinement in the x-direction (Figures

A.2 and A.1).

Section 6.2.4 used the outcome of the preliminary study (Appendix A) and de-

creased the aspect ratio, around the SWL, by using 128nodes/λ in the x-direction

and 32 nodes/H in the y-direction for the medium mesh. This present section in-

vestigates whether or not the same sensitivity to one dimensional refinement is

observed for the grids described in Table 6.5.

All numerical options and boundary conditions remained the same as in Section

6.2.4. Only the mesh spacing in either the x-direction or the y-direction was

altered at one time. The medium mesh, was coarsened in ∆x to give a mesh with

64 nodes/λ in the x-direction and 32 nodes/H in the y-direction and coarsened

in ∆y to give 128 nodes/λ in the x-direction and 16 nodes/H in the y-direction.

The extra meshes used in this one-dimensional are presenting in Table 6.10. The

time step was selected in order to maintain a CFL number of 1.1 for each of the

respective meshes.
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Figure 6.9: Free surface plots showing the effect of effect of one dimensional
refinement in the x-direction. Here, a cell density in the y-direction was set to 16
cells per wave height, H.
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Figure 6.10: Free surface plots showing the effect of effect of one dimensional
refinement in the y-direction. Here, a cell density in the x-direction was set to
128 cells per λ.
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Table 6.10: Grid spacing node counts used in the one-dimensional refinement
study

Nodes / λ Nodes / H

16 32 64

64 37842a 74970 -
128 71760 142170b -
256 140660 - 552178c

a Coarse Mesh
b Medium Mesh
c Fine Mesh

Table 6.11: Two tables: The left hand table shows the time for running an 18s
transient problem with four cores, on the 5λ + 5λ domain. Six different mesh
layouts are used, the diagonal being the meshes discussed in Section 6.2.4 the off
diagonals being as a result from one dimensional refinement. The right hand table
shows the relative change for the average wave height compared to the fine mesh.
The average wave height over the four wave heights on the fine mesh = 0.7698m.

Wall Clock Time % difference

16 32 64 16 32 64

64 1.1 days 5.2 days - 14.3% 5.8% -
128 3.7 days 5.9 days - 10.1% 3.7% -
256 10.3 days - 48.8 days 6.4% - 0%
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Table 6.11 compares the computational times each mesh3, and the corresponding

percentage difference compared to the fine mesh. Grid coarsening on the medium

mesh in the y-direction reduces the run times from 5.9 days to 3.7 days, but,

the results see a change in the error, compared to the fine mesh, from 3.7%

to 10.1%. Comparatively, coarsening in the x direction only sees a reduction in

computational time of 0.7 days and an increase in error to 5.8%.

Analysis of this table shows that the diagonals of these tables, i.e. the original

meshes, seem to exhibit the best balance between run times and accuracy. This

suggests that the chosen ratio of cells/λ : cells/H is appropriate.

Uniform mesh spacing

In order to allow for comparison with FLOW3D (Section 6.4) and to ensure that

errors would be propagating equally in the x and y-directions, the wavemaker

problem was investigated on a mesh with uniform grid spacing through out the

domain, except in the numerical dissipation zone where the grid stretching was

still imposed.

A mesh consisting of ∆x and ∆y spacings equal to 2cm, 2/
√

2cm and 1cm were

used. Qualitatively the results of this investigation can be seen in Figure 6.11.

Clearly these results suffer from the wave height attenuation down the flume and

some noise exists along the free surface. It was decided not to pursue this avenue

of investigation any further.

It can be concluded from this that CFX requires more than 8 cells per wave

height in order to adequately resolve the free surface. The computation cost of

using more than 8 cells per wave height while preserving the uniform mesh spacing

throughout would be excessive 4. Attempts were made to use a more refined mesh,

but solver stability proved to be an issue.

Due to large run times shown in this study, and the poor results observed using

a homogeneous grid spacing throughout, the pragmatic approach to mesh design

in CFX is to have a small area of refinement around the free surface and then

impose a grid stretching away from this area, as presented earlier.

3. computational times were wall clock times using four cores and a CFL number of 1.1
4. For reference, the 1cm mesh, on four cores had a run time of 14.4 days
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Figure 6.11: The free surface on three different meshes each with a uniform
mesh spacing

Wave Height Decay

One persistent observation noticed in all meshes, regardless of time step, was

that of wave height decay down the flume. The target wave height, based upon

Eq. 3.111, was 8cm. Figures 6.6 and 6.7, and more quantitatively, Tables 6.6 and

6.7 show that the wave heights decrease as the wave train progresses down the

wave flume. The wave height attenuation is more severe the coarser the mesh or

larger the time step, however, it is present in all meshes and time steps to varying

degrees.

Recognising that the use of linear theory and its application to second order

waves (Figure 6.1) will result in smaller wave heights and acknowledging that

wave heights in physical flumes also decay, the wave height attenuation noticed

here is still excessive and while not as severe as reported by Bhinder et al. (2009a)

(who reported CFX to be totally unusable), wave height decay is still persistent.

This will be explored and discussed further during the validation procedure in

the following section.
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6.2.5 Validation against linear wave theory

As discussed in Section 5.3 a validation case can be conducted using either a

physical test case or a well known analytical solution. For many applications in

CFD, it is not possible to obtain an analytical solution to the problem being

modelled. For this study however, there is scope to compare the CFD results

to an analytical solution. Linear wave theory is a well established, studied and

understood problem. The theory presented in Chapter 3 can accurately predict

the motions of the fluid as long as the waves remain in the linear regime (figure

6.1) and will be used herein as a validation case.

For this section, a validation case will be conducted using linear wave theory and

three different wavemaker profiles as discussed in Section 3.4.

The wave parameters chosen for the validation case were; wave height,H = 0.01m,

wave period, T = 1.25s and a water depth, h = 1.5m. These wave parameters

would generally not be used in a physical wave flume due to their small size

at full scale, but they ensured that the validation waves were operating in the

linear, deep-water regime and that linear wave theory could be used to validate

the numerical results from CFX.

The mesh layout was very similar to that used in Section 6.2.4 and shown in Figure

6.2. There was an area of uniform grid refinement in the y-direction, extending

0.01m above and below the SWL. The grid spacing outside this region was then

stretched in the vertical direction, leaving relatively large cells in areas of less

importance, i.e. the air void and the bottom of the flume. The wave-flume for this

case was again 10 wavelengths long, including a five-wavelength wave dissipation

zone.

The predicted wave length for a wave of T = 1.25 and H = 0.01m operating in

deep water conditions results in λ = 2.4375m, thus the total wave-flume length

was 24.375m. Again, this mesh had a grid stretching zone at x ≥ 5λ resulting in

a de facto flume length of 5λ.

The choice of mesh parameters was based upon the verification study presented

in Section 6.2.4. It was decided that 200nodes/λ and 40nodes/H would yield the

best balance between CPU time and result accuracy. Based upon the temporal

discretisation study conducted in Section 6.2.3, a time step was chosen in order to

achieve a two dimension al CFL number between one and two. A time step of t =

0.005s yields a CFL number of 1.75 and based upon the temporal discretisation
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study, this is an appropriate CFL number.

The numerical set up and boundary conditions for the validation case were the

exact same as for the verification process except for the wavemaker boundary. For

the validation case, three different wavemaker profiles, as discussed in Section 3.4,

were chosen: a piston, a bottom hinged flap and a hyperbolic cosine wavemaker.

Piston validation

This section presents the validation case for a piston wavemaker, comparing the

results of CFX to linear wave theory. The boundary in CFX, representing the

wavemaker, is moved horizontally in a sinusoidal motion with the amplitude dis-

placement set according to Eq. 3.111 in order to achieve a wave height, H, of

1cm. As discussed, this combination of wave height, wave period and water depth

ensures linear, deep water waves.

The free surface plot comparing the output from CFX to linear wave theory is

shown in Figure 6.12. Close to the wavemaker, very good agreement is achieved.

The agreement between both the predicted evanescent wave, given in Eq. 3.84

and the CFX output is excellent showing that CFX can very accurately and pre-

cisely predict the fluid structure interaction close to a moving body. At distances

down the wave flume, the agreement diverges slightly. The CFX solution under

predicts the wave height. The further down the flume the worse the wave height

attenuation is.

Figure 6.13 shows the progression of the wave for a duration of 5 seconds at

1 second intervals. Close to the wavemaker, at x = 0, the contribution of the

evanescent wave to the progressive wave can be seen as a standing wave attached

to the front of the wavemaker. The exponential decay envelope of the evanescent

wave with increasing values of x is also apparent.

Figure 6.14 shows the predicted group velocity and phase velocity superimposed

on a time plot showing the progression of the free surface. Not withstanding the

wave height attenuation, very good agreement is observed for both the group

velocity and the phase velocity of the waves.
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Figure 6.12: Free surface comparison between CFX and Linear wave theory,
at 19s, for a piston wavemaker. Close to the wavemaker, the contribution of the
evanescent mode is clear. CFX predicts this behaviour accurately. At a distance
away from the wave maker, a decrease in wave height is observed and the agree-
ment between CFX and theory diverges slightly.
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Figure 6.13: A free surface time-lapse over five seconds superimposed onto a
single figure for a bottom hinged flap. The evanescent wave contribution near the
wavemaker is visible at distances of x ≤ h.
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Figure 6.14: Waves generated in CFX by the wave maker at x = 0, at a sequence
of time steps, t, in intervals of wave period, T . The slopes of the two lines represent
the group velocity and the phase velocity.

Bottom hinged flap validation

A bottom hinged flap wavemaker was replicated by setting the displacement am-

plitude at the free surface according to Eq. 3.112 and imposing a vertical displace-

ment function of f(y) = 1 + y/h. Figure 6.15 shows excellent agreement between

CFX and linear wave theory close to the wavemaker. Again, the evanescent wave

is accurately predicted in CFX. The evanescent wave for a flap is less than that

for a piston as the velocity profile a flap wavemaker imposes on the water par-

ticles is closer to their natural Airy Orbital paths than that of a vertical piston.

Wave height attenuation away from the wavemaker is present again. This is most

apparent when looking at Figure 6.16, showing a time lapse of the free surface

over 5s at 1s intervals superimposed on one single plot.

Hyperbolic cosine validation

The prospect of having a wavemaker without any added mass or any evanescent

wave was discussed by Falnes (2002) and Naito (2006) and presented in detail

in Section 3.3.1. Falnes suggested that the wavemaker would be flexible, while

Naito proposed that the wavemaker could be composed of many segments in

the vertical direction. Neither of these are practically realisable, but CFD allows
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Figure 6.15: Free surface comparison between CFX and Linear wave theory, at
19s, for a bottom hinged flap wavemaker. Close to the wavemaker the contribution
of the evanescent mode is clear. CFX predicts this behaviour accurately. At a
distance away from the wave maker, a decrease in wave height is observed and
the agreement between CFX and theory diverges slightly.
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Figure 6.16: A free surface time-lapse over five seconds superimposed onto a
single figure for a bottom hinged flap. The evanescent wave contribution near the
wavemaker is visible at distances of x ≤ h.
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Figure 6.17: Free surface progression over five seconds superimposed onto a
single figure. It can be seen that there is no contribution to the free surface from
evanescent waves. Close to the wavemaker it can be seen that the wave height is
at the target height of 1cm and an envelope of wave height decay down the length
of the flume is apparent.

the wavemaker to take any shape or form without the inconvenience of of being

limited to physical and technical constraints in order to build such a wavemaker.

The shape profile, c(z) of this wavemaker for this study took the form of

c(z) =
cosh(ks(z + h))

cosh(ksh)
, (6.4)

where ks is a fixed coefficient wave number at a frequency of ωs = 0.8s satisfying

the real part of the dispersion relationship, Eq. (3.42). The amplitude of oscillation

was chosen according to wave height to stroke amplitude ratio given in Eq. 3.113

and this was subjected to a sinusoidal oscillation at a frequency of 0.8s.

Figure 6.17 shows the free surface over a five second period at one second intervals

for a hyperbolic cosine wavemaker. In contrast to both Figures 6.16 and 6.13, no

evanescent waves are present near the wavemaker at x = 0. The target wave

amplitude of 5mm is achieved at distances close to the wavemaker. Again, wave

height attenuation is persistent for distances greater than three wavelengths away

from the wavemaker.
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Table 6.12: Wave metrics for the three validation cases; a piston, a bottom-
hinged flap and a hyperbolic cosine.

1 2 3 4

Piston

Wave height 0.0099 0.0098 0.0097 0.0095
Wave lengtha 2.4085 2.4277 2.4199 2.4418
Wave lengthb 2.4299 2.4361 2.4320 2.4237

Flap

Wave height 0.0099 0.0098 0.0098 0.0096
Wave lengtha 2.4284 2.4312 2.4227 2.4384
Wave lengthb 2.5016 2.4288 2.4360 2.4361

Hyperbolic cosine

Wave height 0.0099 0.0098 0.0097 0.0095
Wave lengtha 2.4292 2.4334 2.4333 2.4292
Wave lengthb 2.4304 2.4264 2.4438 2.4247

a Based upon zero up-crossings
b Based upon zero down-crossings

6.3 Discussion on CFX results

Sections 6.2.3 and 6.4.4 explored the temporal and spatial discretisation errors

associated with a progressive wave radiating away from an oscillating boundary

using ANSYS CFX. Section 6.2.5 applied the established optimal time step and

grid spacing to problem with an analytical solution. Both of these studies showed

up some interesting results.

While conducting the temporal discretisation study in Section 6.2.3 it was found

that the best results5 were obtained when a CFL number between 1.1 - 2.2 is

used. Using a time step that corresponds to a CFL number of below 1, (i.e. CFL

= 0.55) resulted in increased run time and a deterioration in results. There was

little discernible difference, less than 0.71%, in the results between using a CFL

number of 1.1 and 2.2. Here the choice could be made between required accuracy

and computational time.

The spatial discretisation study highlighted the need for a very fine mesh at the

5. This refers to the best temporal convergence while also taking into consideration the com-
putational expense.
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free surface in both vertical and horizontal directions in order for CFX to achieve

grid convergence. The formal grid convergence study found that the fine mesh

reported convergence indices of the order of 1− 4%. There could be an argument

made that extra refinement should be pursued if smaller errors are needed, but

as the run times for the fine mesh with a CFL number of 1.1 were taking nearly

50 days, it was felt that following up with another successively finer grid would

be problematic.

The verification procedure for ANSYS CFX was computationally expensive. Li-

cense availability was limited to eight cores and all of the jobs were broken up

into 4 core jobs. Even with eight licences and only one primary user, the verifica-

tion process was time consuming but necessary. It is disconcerting however, that

these excessive run times were for a two dimensional simulation of 18s transient.

Without a considerable increase in computing power, modelling a three dimen-

sional wave tank able to test long time durations would be prohibitively time

consuming.

The validation case in Section 6.2.5 compared the CFX results to a known ana-

lytical solution. Good agreement between the free surface displacement in CFX

and linear wavemaker theory was observed, particularly at distances close to the

wavemaker. The presence of the evanescent wave was modelled and predicted ac-

curately. There has been discussion in literature on the possibility of constructing

a wavemaker that has zero added mass and no evanescent wave, but this was never

implemented. CFX has proved that a hyperbolic cosine wavemaker does not have

any evanescent waves at a chosen frequency. This is something that practically

was impossible to show in a laboratory but CFX confirmed this through CFD.

CFX is capable of accurately predicting the fluid motion close to the moving

structure, but throughout the verification and validation process, persistent wave

height attenuation was noted as the wave progressed down the flume. Regardless

of CFL number or grid resolution, wave height decay was observed. As well as

decreasing wave heights, changes in the wavelength of the waves from point to

point was also observed. The change in wave length could either be due to energy

in the wave transferring from the wave height over to wave length, thus maintain-

ing the same energy levels, or the decreasing wave lengths could be due to over

all energy reduction in the domain.

Subsequent discussions with ANSYS, regarding the wave height attenuation prob-

lem, have confirmed that in order to maintain a stable interface in the VOF



6.3. Discussion on CFX results 119

scheme, ANYSYS introduced a damping term in to the solver to mitigate against

high frequency waves that were observed on the free surface. The progressive

wave being modelled here is not high frequency, but this damping term could be

responsible for the decay in both wave height and length due to energy extraction.
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6.4 FLOW3D

This section presents the verification of results from another commercial CFD

solver, FLOW3D v9.4. It will attempt to model the same physical problem as

CFX, described in Section 6.1, and will follow the same procedure outlined in

Section 6.2, using the same spatial discretisation in order to allow for a comparison

between results. It should be noted that direct comparisons between different

solvers can be hazardous. Each solver was designed with specific applications in

mind, and while most claim to be versatile general purpose solvers, each will

have its own niche applications. The choice of what solver to use is very much

dependant on the end users application and what physics need to be modelled.

FLOW3D is a more specialist code compared to CFX, which is acknowledged as

being a more general purpose solver. FLOW3D was developed with free surface

applications in mind and it implements a proprietary method of interface tracking

and free surface advection referred to as TruVOFr. This method claims that it

alleviates the problems associated with the standard VOF advection methods

such as over-filling or over-emptying computation cells when volume fluxes are

significant in all directions and the time step is close to the local Courant stability

limit (Barkhudarov, 2004). TruVOF is a mixed Lagrangian-Eulerian approach and

is described in Figure 6.18. Another benefit reported with this method is that it

does not need as many cells near the free surface and, therefore, the computational

time can be reduced compared to other CFD codes, such as CFX.

FLOW3D is based on the Reynolds Averaged Navier Stokes (RANS) equations.

It has both implicit and explicit solver modelling options with first, second and

third order advection schemes. FLOW3D incorporates solid body motion via a

technique named FAVOR. FAVOR is based upon the concept of area fraction and

volume fraction on a rectangular structured mesh (Hirt and Nichols, 1981). It

introduces the effects of area fraction and volume fraction into the conservation

equations of fluid flow. This method is responsible for the General Moving Object

(GMO) in the modelling options which allows six degree of freedom rigid body

motion and this is used to implement the wavemaker motion in this study.

FLOW3D has the capability to model only one fluid, water, unlike CFX that

models both water and air. The fact that the air is not modelled means that the

computational time will be reduced further.

All of the FLOW3D problems, unless otherwise specified, were run on machines
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Figure 6.18: Three steps of the Lagrangian interface tracking method: a) piece-
wise linear interface reconstruction with the normal n b) moving the control vol-
ume and c) overlaying the advected volume onto the grid (Barkhudarov, 2004).

with Intelr coreTM2 Quad CPU at 2.50GHz processors and 8GB of RAM.

6.4.1 Generation of meshes

FLOW3D adopts an integrated mesh generation approach, so all meshes were

generated within the FLOW3D user interface. Overall, the mesh length was 14

wavelengths long (21.84m). The increased domain size could be justified due to

the relative computational savings in time compared to CFX.

In the vertical direction, the domain is 1m high. As the air flow-field is not solved

for in FLOW3D, there is no need to have as high a clearance between the water

and the top boundary condition. The grid is extruded one cell thick into the

domain, similar to CFX, resulting in the a quasi 2D problem.

Similar to the mesh discussed in Section 6.2.1 for CFX, the FLOW3D mesh also

consists of two distinct regions: a region of seven wavelengths immediately in

front of the wavemaker and a second region of equal length down-wave to act as a

numerical dissipation zone. It should be noted that the numerical dissipation zone
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is not entirely necessary for FLOW3D as there is an outflow boundary condition

available for selection which can deal effectively with the out going wave, but

keeping this region allows for a closer comparison to the CFX meshes and it is

considered a conservative approach.

Two different mesh types will be explored with FLOW3D. The first mesh will

have an area of cell refinement around the free surface again similar to that used

in Section 6.2.4, and it will also explore the effect of using a mesh with uniform

mesh spacing, to be discussed in Section 6.4.4.

6.4.2 Boundary conditions

The boundary conditions imposed in the problem were, symmetrical boundary

on both the near and far vertical faces of the flume. No-slip wall condition for the

floor of the flume and opening for top. The vertical boundary at x = 21.84m was

set as outflow boundary condition with the option to allow flow enter the domain

enabled. Due to the orbital nature of the water particles under wave motion,

water at the boundary will need to exit and enter, if the fluid is only permitted

to leave the domain, a decrease in the volume of the water is observed.

Numerical options

The wavemaker for FLOW3D was not implemented using a moving boundary

condition as in CFX. The GMO option was enabled in the numerical options,

allowing the presence of a solid six DOF body to represent the wavemaker. A

piston wavemaker was modelled using a rectangular body covering the yz plane

at x = 0. This was subjected to a sinusoidal displacement with the amplitude set

according to Eq. 6.2.

The flow field is initialised using the hydrostatic pressure of the fluid and all

velocity components are set to zero. The total time for the transient runs was

chosen as 20s. This is 2s longer than the CFX simulations, to allow for the wave

flume being an extra 2λ longer, but the simulation times for FLOW3D compared

to CFX were found to be drastically shorter and it was decided that the extra

transient time could allow for further analysis.

There are six numerical options available for the volume-of-fluid advection, how-

ever, only three of these options are of interest to this problem. The first one

applicable to this problem is the ‘one fluid, free surface’ option, also referred to
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as ifvof =4. This is the original VOF advection scheme and ‘moves’ the fluid in

three discrete Eularian steps, x then y then z. The other two methods are the

‘unsplit Lagrangian’ (ifvof =5) and ‘split Lagrangian’ methods (ifvof =6). In the

unsplit Lagrangian method the fluid is advected in one single step in x, y and z,

whereas in the split version, the fluid is moved in two steps, xy and then in z.

It was found that there was very little difference between the two Lagrangian

methods, ifvof =5 and ifvof =6. Both of these options gave better results when

compared to the ifvof =4 scheme. The reason that ifvof =5 and ifvof =6 gave very

similar results could be due to the 2D nature of this problem. If modelling a 3D

case, the unsplit Lagrangian method, ifvof =5, would probably be more suited.

This is because water particle motion in gravity waves is characteristically orbital.

The extra steps involved in the ifvof =4 and ifvof =6 might disturb the the conser-

vation of momentum as the free surfaces travel through the mesh diagonally. This

is not something that could be investigated further as FLOW3D is a commercial

code, and as such a ‘black box’ tool. For the following problems the split La-

grangian, ifvof =6, option was selected for the VOF advection. When modelling a

3D problem differences between ifvof =5 and ifvof =6 should be investigated and

the best chosen accordingly.

There are three momentum advection options available. The most suitable option

for this problem wave first order. During preliminary studies, it was found that

the higher order schemes, second order, second order monotonically preserving

and third order, suffered from instabilities on the free surface and a smooth wave

form was not observed. First order momentum advection gave best results.

6.4.3 Temporal discretisation

FLOW3D has inbuilt stability control that adjusts the time step automatically

to ensure that the solver remains within the stability limits. There is an option

for the user to specify the time step size, but better and more stable results were

found leaving the solver set the time step size at each iteration. At times, the

solver did report an error message of ‘Time step size < dtmin’. This implied that

the solver quit because the time step size fell below the minimum time step. The

problem occurred for the initial time steps, probably due to the initialised solution

not matching up exactly with the physical problem. The solution to avoid this

was to increase the maximum amount of iterations in the solver options in order

to achieve convergence for the initial time steps.
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Table 6.13: Grid spacing and node count for the three initial meshes used in
FLOW3D

Coarse Medium Fine

Cells / λ 64 128 256
Cells / H 16 32 64
Cell Count 200,000 400,000 1,600,000

6.4.4 Spatial discretisation

The three meshes chosen for the spatial discretisation study were based upon

the meshes used for CFX, presented in Section 6.2.4. Unlike the meshes used

in CFX, the spacing in the y-direction was uniform above and below the SWL.

The FLOW3D solver crashed when grid spacing was stretched in the vertical

direction and, in order to overcome this, the node spacing in the y-direction was

kept uniform above and below the SWL. The computational time for FLOW3D

was found to be substantially quicker compared to CFX so this extra CPU time

was not a cause for concern. As a result, a doubling of the cells in both directions

resulted in the cell count increasing by a factor of four. The metrics for the three

meshes are shown in Table 6.13.

Similar to Section 6.2.4, a formal grid convergence index study was conducted.

The meshes described in Table 6.13, with a refinement ratio of r = 2, were

used to perform the grid convergence index. These results are presented in Table

6.14. Here the metrics were not as well behaved as for CFX but, as they were

point measurements, there is always the possibility for more variance. Further

work could be carried out in order to analyse this, possibly using an integral

measurement such as force on the wavemaker as the index metric but, it is thought

unnecessary for this study as a relatively good idea of the spatial discretisation

error can be obtained from wave height measurements.

Figure 6.20 shows the time step size used by the FLOW3D solver. On average the

time step size is ≈ 0.004s. Using Eq. 6.3, this corresponds to a CFL number of

1.76. The time step size for the coarse and fine meshes averaged out at ≈ 0.008s

and≈ 0.002s respectively - both corresponding to a CFL number of 1.76 also. This

compares closely to the time step size used for the CFX analysis. The outcome

of which suggests the use of a CFL number in between 1.1 to 2.2 is appropriate

for VOF solvers.
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Table 6.14: Grid convergence indices for six wave heights using FLOW3D. Sub-
script index of 3 represents the coarsest relative mesh and 1 the finest.

1 2 3 4 5 6

f3 [m] 0.071 0.068 0.064 0.060 0.056 0.055
f2 [m] 0.073 0.072 0.069 0.068 0.066 0.064
f1 [m] 0.076 0.073 0.073 0.071 0.072 0.070

ε32 [m] -0.002 -0.004 -0.005 -0.008 -0.010 -0.009
ε21 [m] -0.003 -0.001 -0.004 -0.003 -0.006 -0.005

p 0.859 2.575 0.501 1.326 0.738 0.381

f21
ext 0.079 0.073 0.081 0.074 0.081 0.640

e21
a 4.02% 0.97% 4.84% 4.40% 8.53% 7.95%

e21
ext 4.71% 0.19% 10.45% 2.84% 11.33% 12.47%

GCI21
fine 6.17% 0.24% 14.58% 3.65% 15.97% 17.80%

Table 6.15: Six wave length comparisons between meshes in FLOW3D using
meshes described in Table 6.13.

1 2 3 4 5 6

Coarse 1.640 1.653 1.631 1.589 1.567 1.583
Medium 1.605 1.624 1.603 1.593 1.575 1.564
Fine 1.597 1.591 1.597 1.572 1.566 1.571

a Based upon zero down-crossings

The computational times to obtain these results are given in Table 6.16. These

computational times are nearly a factor of 20 shorter than a similar simulation

using CFX. It should be noted that this comparison does not take into account

that the FLOW3D results are for 2s extra in transient duration, 4λ longer in

domain length and uniform cell spacing in the y-direction resulting in high cell

counts in the domain.



6.4. FLOW3D 126

Table 6.16: Computational time to run 20s on FLOW3D using three different
meshes: coarse, medium and fine

Mesh Total CPU time1 Wall clock time2

Coarse 1.843 x103 s 0.02 days
Medium 5.911x104 s 0.17 days
Fine 5.186 x105 s 1.77 days

1 Summed CPU time using four cores
2 Total wall clock time
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Figure 6.19: Time snap at 18s of the free surface showing wave height elevation
on the three different meshes: coarse, medium, fine for FLOW3D

Figure 6.20: The time step size the FLOW3D solver used on the medium mesh.
The corresponding time steps for the coarse and fine meshes were roughly double
and half respectively
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One dimensional refinement

Similar to Section 6.2.4 a one dimensional refinement study was conducted on

FLOW3D in order to assess the sensitivity of results to mesh refinement in one

dimension. All numerical options and boundary conditions remained the same

as in Section 6.4.4, only the (medium) mesh was coarsened in either the x or

y-direction at one time. The mesh spacings used are the same as those presented

in Table 6.10 for CFX.

Results from the one dimensional refinement study show that FLOW3D is quite

sensitive to changes from the original mesh spacing. This would suggest that the

initial aspect ratio choice, cells/λ : cells/H, was poor. Table 6.17 presents the

results of this study quantitatively. This table presents the computation times on

each mesh and then compares the obtained answer to the fine mesh, reporting on

the relative error to the fine mesh results.

The medium mesh was coarsened independently in the x-direction and then in

the y-direction and the results of both are shown in Figure 6.22. It can be seen

that coarsening in the x-direction has a deleterious effect on the results, changing

the % error from 5.3% to 36.0%. Conversely and almost counter-intuitively a

coarsening in the y-direction resulted in an overall improvement in the results,

where the average wave height difference decreased from 5.3% to 2.1% and taking

almost one quarter the amount of CPU time, Table 6.17.

The fact that the results improved with a coarsening does not suggest that better

results would be achieved upon extra coarsening, but points more to sensitivity

in cell aspect ratios around the free surface. This will be explored further in the

Section below.

Uniform grid spacing

As a consequence of the results obtained in Section 6.4.4, where it was found

that coarsening the grid in the vertical direction gave better results in a quicker

time, it was decided to investigate the results of wave propagation on a grid with

uniform spacing.

After discussions with FLOW3D user support, a study was conducted investi-

gating the effects of having a mesh with equal spacing in the x and y-directions.

It was thought that having a mesh of equal aspect ratio would enable better

conservation of momentum using the TruVOF scheme (FLOW3D, 2010).
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Table 6.17: Two tables: The left hand table shows the time for running a 20s
transient problem with four cores, on the 7λ + 7λ domain in FLOW3D. Six dif-
ferent mesh layouts are used, the diagonal being the meshes discussed in Section
6.2.4. The off diagonals were as a result from one dimensional refinement. The
right hand table shows the relative change for the average wave height compared
to the fine mesh. The average wave height for the six waves gave a value of
0.0725m.

Wall Clock Time % difference

16 32 64 16 32 64

64 0.02 days 0.09 days - 13.7% 36.0% -
128 0.04 days 0.17 days - 2.1% 5.3% -
256 - - 1.77 days - - 0%
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Figure 6.21: Free surface plot examining the effect of one dimensional grid
refinement on the wave height elevation.
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Table 6.18: Grid refinement mesh spacing for uniform mesh in FLOW3D

Coarse Medium Fine V. Fine

∆X,∆Y [m] 0.020 0.010 0.005 0.0025
Cell count 59750 239000 956000 3824000

This study investigates the effect a uniformly spaced mesh has on the propagation

of radiated waves. Herein, four different meshes are used, each with square mesh

spacing shown in Table 6.18.

Figure 6.22 shows the free surface for the four meshes after twenty seconds. The

grid convergence indices based upon the wave height measurements are shown

in Table 6.19. The results obtained using wave height as a metric are indicative

of other metrics measured but not presented: wave length, zero-crossings, peaks,

troughs.

Significant improvements in run times are observed, especially when comparing

the run-times of this uniform mesh study to the previous meshing arrangement in

Section 6.4.4. The wave heights measured using a uniform mesh with a spacing of

0.02m show comparable wave height measurements from the fine mesh in Section

6.4.4, but the run times are 493 minutes compared to 2549 minutes runtime. The

mesh with uniform spacing (0.01m) also yields similar results for the wave heights

compared to the fine mesh at almost a tenth of the CPU time.

As mentioned previously, the default automatic time-step selection option was

used for all FLOW3D results. The FLOW3D solver imposes several restrictions

on the size of the time-step in order to avoid numerical instabilities. The solver

will use the largest time step possible without violating these stability limits.

The limiting stability code reported by the solver using a uniform mesh was ‘fs’,

relating to gravity waves on the free surface. For the previous mesh in Section

6.4.4 the limiting factor was ‘cy’, relating to explicit fluid convection in the y-

direction. Some brief exploration with different mesh ratios showed that the best

results were obtained when the limiting stability factor was set by ‘fs’ and this

predominantly occurred using a mesh with an equal aspect ratio.
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Figure 6.22: Time snap at 20s of the free surface showing wave height elevation
on the four different uniform meshes.

Table 6.19: Grid convergence indices for six wave heights using FLOW3D and
uniform mesh spacing. For this GCI, the three finest meshes from Table 6.18 are
used. Subscript index of 3 represents the coarsest relative mesh and 1 the finest.

1 2 3 4 5 6

f3 [m] 0.075 0.073 0.073 0.072 0.070 0.069
f2 [m] 0.076 0.074 0.075 0.074 0.072 0.071
f1 [m] 0.077 0.075 0.076 0.076 0.074 0.073

ε32 [m] -0.001 -0.001 -0.002 -0.002 -0.003 -0.002
ε21 [m] -0.001 -0.001 -0.001 -0.002 -0.002 -0.001

p 0.421 1.347 1.411 0.584 0.598 0.653

f21
ext 0.080 0.075 0.076 0.079 0.077 0.075

e21
a 1.49% 0.70% 0.88% 2.15% 2.34% 1.83%

e21
ext 4.21% 0.45% 0.53% 4.13% 4.36% 3.10%

GCI21
fine 5.50% 0.57% 0.67% 5.39% 5.70% 4.00%
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Table 6.20: Total CPU time to run 20s transient on FLOW3D using four meshes
each with uniform mesh spacing

Mesh Total CPU time1 Wall clock time2

0.02m 1.129x103 s 0.00 daysa

0.01m 1.004 x104 s 0.03 days
0.005m 1.066 x105 s 0.34 days
0.005m 2.577 x105 s 3.00 days

1 Summed CPU time using four cores
2 Total wall clock time
a 4.9 mins

Table 6.21: Wave metrics from the uniform 0.0025cm mesh.

1 2 3 4 5 6

Wave lengtha 1.580 1.574 1.550 1.567 1.580 1.558
Wave lengthb 1.570 1.553 1.571 1.577 1.555 1.558
Wave height 0.077 0.075 0.076 0.076 0.074 0.073
Wave peak 0.042 0.039 0.039 0.041 0.040 0.037
Wave trough -0.035 -0.035 -0.037 -0.035 -0.034 -0.036

a Based upon zero up-crossings
b Based upon zero down-crossings
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6.5 Discussion on FLOW3D results

Section 6.4.4 performed a spatial discretisation study on FLOW3D using the mesh

configuration that gave the best results in CFX. These results showed poorly-

behaved convergence index metrics when compared to results obtained from CFX

using the same mesh. The wave height attenuation was also more pronounced

in FLOW3D using this mesh compared to CFX. The computational time for

FLOW3D was, however, considerably less compared to CFX.

An investigation into a one-dimensional refinement showed that improvements in

both computational time and quality of results could be achieved if cells with equal

aspect ratios in the x and y-directions were used. Results with grid discretisation

errors of ≈ 2 − 5% could be obtained with computational times in the order of

hours rather than weeks.

Upon further investigation it was found that FLOW3D performs best with a

mesh of uniform grid spacing throughout. This resulted in the solver stability

limit being governed by the free surface term, ‘fs’.

In order to conduct a validation study on FLOW3D for a linear wave of h = 0.01m

and a period or T = 1.25s, using the best mesh from the verification procedure,

i.e. a mesh with uniform spacing throughout the domain; with roughly 312 cells/λ

and 16 cells/H, would require nearly 7.6×107 cells. However, with only one license

and time resource restraints this was not practical.

The difference in computational times to solve the problems is the most striking

difference between FLOW3D and ANSYS CFX. FLOW3D obtained similar re-

sults to CFX, but with CPU times an order of magnitude smaller. This would

prove advantageous if longer transient run times were required or a three dimen-

sional problem was to be analysed.

FLOW3D seemed to suffer from the problem of wave height attenuation down

as the progressive wave travelled down the flume from the oscillating wavemaker.

The extent of the attenuation was similar to that noticed in CFX, but the run

times were an order of magnitude shorter. Presumably, if the mesh was refined to

such an extent that the solver time was comparable to that of CFX (i.e. 48 days),

then the wave height decay would be less pronounced than CFX. However, this

is just speculative.
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6.6 General discussion and conclusions on CFD

results

Computational fluid dynamic software has proven to be an invaluable tool in many

areas of engineering. It is hoped that CFD codes could offer engineers working

in coastal and ocean engineering the possibility of having a numerical wave tank

that solved for the viscous terms in the Navier-Stokes equations, thus, allowing

for a closer analogue to the real world with less assumptions used in potential

flow codes. Indeed, this project was initiated with the same lofty aspirations

and aimed to have a numerical wave tank using CFD codes that incorporated

absorbing wavemakers similar to those used in the University of Edinburgh.

In order to gain confidence in the capabilities and results provided by the com-

mercial CFD codes a bottom up approach was adopted, where the most simple

component of a three dimensional wave tank with absorbing wave makers would

be analysed first. Upon satisfactory implementation of the simple problem the

next layer of complexity could be added, the problem modelled and again vali-

dated. These layers of complexity would be added in a piecewise manner upon

successful completion of the validation toll gate. Regrettably the CFD results

obtained were not of a quality of precision that would allow progress to a more

complex application with appropriate levels of confidence. Not withstanding this,

a lot of information was discovered about the limitations and appropriate appli-

cations of CFD to the maritime environment.

This Chapter has closely analysed the quality and fidelity of the waves radiated

from an oscillating solid boundary. It has performed extensive verification of the

results from ANSYS CFX and FLOW3D and conducted a validation of the CFX

solution against a well known analytical solution. Undoubtedly CFD is useful

for a whole host of problems encountered in the marine environment. This study

however, raised some serious concerns that would question the suitability of using

commercial CFD codes specifically as numerical wave tanks.

The attenuation of the wave heights as the wave train progresses down the wave

flume is one such issue of concern. This wave height decay was observed in both

FLOW3D and CFX. It is something that does happen to a certain degree in

physical flumes and tanks, albeit to a far lesser extent (Ursell et al., 1960). In

physical wave tanks this is circumvented by calibration of the wavemakers in the

wave flume. The gain in the wavemaker’s controller is adjusted in such a manner
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that the desired wave heights are obtained in a certain area of the tank. This

could also easily be done for the numerical wave tank too by increasing the stroke

amplitude of the wavemaker to counter the wave height decay.

This approach would be fine to measure wave forces on singular objects in a

wave flume. In the wave energy sector however, devices are hoped to be deployed

in arrays and array interaction effects should be modelled and accounted for in

order to assess their importance. If two or more devices are radiating waves,

their respective waves will have lost some of their wave height by the time it

has travelled to the corresponding oscillating device thus making the analysis

difficult, and the results questionable. This becomes more pertinent for wave

energy devices, as “in order to absorb a wave, one has to generate a wave”. If the

numerical code has difficulty generating waves of high fidelity, any results obtained

in relation to the absorption characteristics of the device would be suspect.

Another weakness observed while using CFD to model a numerical wave tank

is the excessive computational run times. Physical wave tanks can conduct ex-

periments lasting 15 minutes or more and perform multiple variations of the

experiments over the course of a day. This allows for a full tank test run of sur-

vivability testing and power take off validation to take place over the course of

one or two weeks6. The fine mesh in CFX took nearly two months to model a

transient time of 18s. With the current computational hardware the solver times,

it most certainly precludes CFX from being able to run transient times of 900s

and questions whether or not CFX could be used to create an analogue to phys-

ical wavemakers used in hydrodynamic laboratories. FLOW3D was considerably

less computationally expensive compared to CFX and could allow give reasonable

result for 2D cases. However, the computational times would spiral quickly if the

chosen model was 3D or the transient time increased.

One possible solution to avoid such long run times on the fine mesh would be

to use a coarse and medium mesh and perform a Richardson’s extrapolation

(RE) and assume a second order convergence. Table 6.22 shows the wave heights

obtained using the three meshes: coarse, medium and fine. It also conducts a

Richardson extrapolation on the wave heights using two combinations: coarse

and medium (RE c-m), and again with a medium and fine meshes (RE m-f). It is

clearly seen that the errors reported on the fine mesh and the RE c-m calculation

6. Of course this does not account for model construction time which can be considerable
depending on the scale of the tests and the quality of the PTO model.
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Table 6.22: Wave metrics from the three meshes showing observed wave heights
and lengths. And a comparison to the Richardson Extrapolated (RE) values using
the coarse-medium meshes and the medium-fine meshes, assuming p = 2.

Grid Wave height [m] Wave length [m] %H %λ

Coarse 0.064 1.613 17.4% 1.6%
Medium 0.074 1.596 4.4% 0.5%

Fine 0.076 1.590 0.9% 0.1%

RE c-m 0.076 1.588 1.1% 0.0%
RE m-f 0.077 1.588 0.0% 0.0%

are similar. The time scales involved however are not. The computational time

required to run the coarse mesh compared to the medium mesh is roughly 1/8th,

a factor of four for the spatial discretisation and a factor of two to account for the

smaller time step. This approximation is confirmed as a good estimate for the run

times by both CFX and FLOW3D. The same time difference is observed when

going from the medium mesh to the fine mesh. Thus, the time difference between

running two meshes: coarse and medium, is 9/64th the time to run a single fine

mesh. This would become even more pronounced if the simulation was three

dimensional. Here the computational cost to run a coarse and a medium mesh

would be 17/256th the cost of running a fine mesh. This would be of particular

use if a parametric study into some aspect of the design was to be conducted

as the coarse and medium mesh would allow for far more results at a given

computational expense.

ANSYS CFX proved to be very accurate at predicting the fluid velocities and

water particle displacements next to the oscillating wavemaker. The validation

case in Section 6.2.5 showed that CFX precisely predicts the free surface elevation

due to the radiated progressive wave and the standing evanescent wave. This is

a very useful result and gives confidence that CFD can predict the fluid forces

acting on an oscillating object radiating waves correctly. This suggests that CFD

could be a useful tool to be used in conjunction with potential flow codes.

Potential flow codes are appropriate when the waves are of small amplitude, the

body motions are small and of course it neglects any viscous energy losses. The

small amplitude assumptions break down in the more energetic sea-states and the

viscous losses do become important, especially when a wave energy converter is
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submerged or re-merges out of the water7. CFD codes could provide an empiri-

cal relationships or look up tables, that could be included in the potential code

that accounts for these viscous losses. This would allow for greater confidence

in a potential code’s results when modelling more energetic sea states, and also

benefiting from the quick run times associated with these numerical solvers.

An issue of concern for any device at sea is that of survivability under extreme

conditions. CFD could be used to test a device’s survivability characteristics in

large deterministic waves. It would provide the wave forces that the device could

expect to encounter under specific extreme wave heights, allowing the engineer to

design the device accordingly. CFD would not however by suitable for survivability

testing using a non-deterministic wave testing approach that uses long run times

for a given sea state and relies on statistical probability for certain Hmax to occur

as the computational run times would be excessive.

Commercial CFD software is a powerful design tool and more readily accessible to

engineers than bespoke CFD codes. It offers the prospect of knowing all measur-

able quantities across the whole domain, a large advantage over physical experi-

ments where every measurement needs to be taken independently. With evermore

advancements in computer hardware, it will begin to play an even more impor-

tant role in the design of marine devices. It should be used with caution however,

where an appreciation of the limits and validity of the results is paramount. The

present failings in the two commercial CFD codes8, namely the persistent wave

height decay and excessive run times, would suggest that they cannot yet provide

a realistic option to act as a numerical wave tank. Results from this investigation

are positive regarding the fluid-structure-interactions and CFD offers huge poten-

tial as a design tool to be used in conjunction with and to compliment theoretical

modelling, experimental wave tank work and potential flow code solvers.

7. For example a wave energy converter will be constantly submerged by over-topping waves,
being subjected to viscous losses as the water rushes over the top of it. Conversely when parts
of the device re-emerge at the crest of the wave, viscous losses under the device will also play
a part
8. FLUENT and CFX solvers are both owned by ANSYS and their solvers are beginning to
converge, so the same wave height attenuation will be in issue with FLUENT also. CD-Adapco’s
STAR-CCM+ has the same issues with wave height decay, but a more detailed study would be
required to quantify this



Chapter 7

Conclusions and further work

This thesis has covered several topics of wave hydrodynamics and numerical mod-

elling, including wavemaker theory, wave absorption, control of wavemakers, ver-

ification and validation in a Navier-Stokes solver and the generation of waves in

a commercial computational fluid dynamic code. From the outset, the original

goal for this project was to incorporate and model hydrodynamic and control

theory of wavemakers using a commercial CFD code. It was hoped that physical

and numerical convergence would be achieved, allowing the creation of the curved

experimental wave tank using a Navier-Stokes solver. This high aspiration was

not achieved and the two separate threads of theory and computation were not

joined up in the end to give a fully coherent story. This was due to difficulties

encountered with the numerical codes.

This project discovered and, more importantly, quantified very serious limitations

associated with certain commercial CFD software. Certain shortcomings with

these numerical codes became apparent very quickly while attempting to model

a simple test case of monochromatic wave generation. It was found that both

commercial VOF solvers struggled to model these waves accurately. While very

good progress was made in the hydrodynamics and control theory, it could not

be implemented as originally envisaged in the CFD codes; as in order to absorb

a wave, one must generate a wave. The CFD proved incapable of accurate wave

generation.

Not withstanding this, the limitations and applications of commercial CFD codes

has been accurately established. These commercial codes are used widely through

the industry and the results presented herein will act as an invaluable guide to

the discussion and usage of these codes.

This chapter presents a summary of some important findings and original contri-

butions from this thesis, and proposes some recommendations for future work.

137
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7.1 Summary and Conclusions

Using the well established linear wavemaker theory, Chapter 3 presented, for the

first time, analytical functions for the hydrodynamic coefficients for two novel

wavemaker profiles. It was shown that for a specific frequency, the shape pro-

file of a wavemaker can be chosen such that it either has no added mass or no

hydrodynamic damping under oscillation. The existence of such wavemakers has

been discussed in the literature, but the analytical expressions of hydrodynamic

coefficients have never been derived fully or presented in graphical format. These

analytical expressions allowed for easy calculation of the added mass and damping

which allowed for quick analysis of absorption characteristics of the wavemakers

later in the thesis.

Chapter 4 presented the theory behind the absorption of waves by wave energy

converter control systems. This theory was applied to an absorbing wavemaker

acting in surge. It was shown that the choice of control strategy and the number

of control coefficients used, has a profound effect on the levels of absorption of

the wavemaker. All reactive control strategies achieved optimal levels of absorp-

tion at the given tuned frequency, but away from the tuned frequency over all

levels of absorption differers considerably. Real control systems proved relatively

insensitive to the tuning frequency. It argued the need for device developers to

consider incorporating reactive control into their devices and also what type of

reactive control to implement.

The concept of geometry control was introduced, using wavemakers with geom-

etry chosen to be optimal for one chosen frequency. It was shown that for this

chosen frequency an absorbing wavemaker can operate with zero added mass.

This reduces the need for reactive power at this geometrically optimal frequency.

If the the absorption control system is tuned to achieve complex conjugate control

at a frequency other than the frequency where zero added mass occurs, increased

levels of absorption over a broad bandwidth are be observed. Thus, two han-

dles of control on absorption are available to the design engineer: geometry and

absorption force.

This is particularly applicable in the design of absorbing wavemakers in numerical

wave tanks as the shape profiles can readily be altered in a numerical code. If

used in conjunction with a numerical sponge layer, it offers the potential for a

highly effective numerical absorbing boundary condition. This concept could also
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be applied to wave energy converters and highlights the importance of geometry

design of the device. If an attenuator or point absorber is geometrically designed

to be optimal for a certain wave climate, then increased levels of energy production

could be obtained if the absorption control systems were tuned to an alternative

frequency to that of the geometry. The chosen frequency does not necessarily need

to be the peak frequency of the spectrum. It also argues that increased energy

production could be achieved if the geometry and control are considered in the

design process concurrently.

Chapter 5 presented the methods associated with a rigorous verification procedure

for numerical analysis. These methods of verification appear more frequently in

areas where CFD is a more established tool and have yet to be applied to the

wave energy sector. Chapter 6 performed a formal verification analysis of wave

propagation using an industry standard CFD code, ANSYS CFX and another

commercial solver, FLOW3D.

The verification study identified the key numerical parameters that must be spec-

ified in order to reduce the errors in the free surface to less than 6% of the correct

numerical value. It was shown that CFX and FLOW3D are both sensitive to

the spatial discretisation and mesh aspect ratio. The best results using CFX were

obtained using an area of grid refinement around the free surface with recommen-

dations of approximately 200 cells per wavelength and 40 cells per wave height.

For FLOW3D best results were obtained with a homogeneous uniformly spaced

grid with roughly 600 cells per wavelength and 30 per wave height. The time step

chosen should result in a CFL number between a value of one to two. The output

from these investigations can be readily applied by the industry.

The results from this thesis question the suitability of using commercial CFD

codes as a numerical analogue to physical test tanks. The computational run

times exceed the physical transient run times by several orders of magnitude. Un-

less computational run times can be reduced considerably, experimental facilities

will always be favoured over CFD options for long duration tests or frequently

repeated tests. It should be noted that computational times for CFX were con-

siderably longer compared to FLOW3D and FLOW3D does offer the possibility

to model a wave tank in 2D.

Both codes suffered from persistent wave height attenuation of the propagating

wave down the numerical wave flume. This is a problem that had not previously

been characterised or quantified. In some instances the literature acknowledged
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this a being a problem, in other publications it was either missed or ignored.

This study has quantified the extent of the wave height attenuation in CFX and

FLOW3D which will allow for the industry to make an informed decision on the

capabilities and limitations of the two codes.

A validation procedure was conducted, comparing the analytical wavemaker solu-

tion from linear wave theory to numerical output from CFX. The agreement close

to the wavemaker between the numerical output and theory was almost exact.

This shows that CFX is a powerful tool that can accurately predict the veloc-

ity flow field around an oscillating body. The good agreement between numerical

and theoretical predictions deteriorated with distance down the flume. This again

highlights the problems of wave height attenuation within the numerical solution.

The validation was conducted against a piston wavemaker and a bottom hinged

flap type wavemaker. For both of these wavemakers, CFX produced results very

close to that of linear wavemaker theory, the agreement did diverge with increas-

ing distance from the wavemaker. The free surface displacement generated by

a wavemaker with a hyperbolic cosine profile was also presented. This type of

wavemaker would prove difficult to physically construct but was more easily im-

plemented in CFX. The numerical results confirmed that indeed it is possible to

construct a wavemaker that generates a progressive wave with no evanescent wave

present. The hyperbolic cosine wave maker could be used in numerical codes for

wave generation as opposed to an open boundary with velocity inlet boundary

conditions as there are known issues of volume of fluid entering the domain using

this method of wave generation. The hyperbolic cosine wavemaker could also be

used in place of piston or flap generated waves in numerical wave flumes. The

validation of the hyperbolic cosine as a wavemaker also suggests towards its suit-

ability to be incorporated as a numerical absorbing boundary condition with the

correct absorption control.

7.2 Further work

During the course of this research and as a result of certain results presented

herein, it is clear that there are a number of points that are worthy of further

research. Below are some of the topics that could merit further work.

Implement the absorption theory discussed in Chapter 4 with the hyperbolic co-



7.2. Further work 141

sine wavemakers in a potential flow code. There are potential flow codes that have

been validated for use as numerical wave tanks and shown excellent agreement.

These codes could be used to implement and analyse the theory presented on ab-

sorption control of active wavemakers. The theoretical absorption levels using the

various combinations of control coefficients could be validated and a hyperbolic

cosine wavemaker could also be included in this study.

Investigate the possibility of constructing a hyperbolic cosine wavemaker. While

construction a perfect hyperbolic cosine wavemaker would prove difficult, an al-

ternative would be to use a cantilever style wavemaker, fixed to the flume floor.

This wavemaker could have physical properties chosen such that when a point

load is applied at the exposed tip of the cantilever, the deflection of the beam

approximates the profile of a hyperbolic cosine.

Quantify the absorption theory described in Section 4 for polychromatic waves in

the time domain. The absorption theory discussed in this thesis has been limited

to the realm of discretised monochromatic waves in the frequency domain. Many

studies do this in order to reduce the complexity of the analysis, however this is a

simplification of the real world physics and it would be important to assess how

this assumption affects the absorption levels.

Analyse and quantify the effect of force feedback on absorption. The wavemakers

used at the University of Edinburgh use two absorption coefficients in conjunction

with a force feedback mechanism. This force feedback measures the force on the

wavemaker and compares it to the absorption force. Theoretically, if the incoming

waves are at the frequency that the absorption coefficients are optimised for, the

measured force on the wavemaker should be insignificant. If the incoming waves

are of a different frequency then there will be a mis-match between the absorption

force and the measured force on the wavemaker. This will drive an error signal to

try to achieve a zero sum force. It would be interesting to quantify the contribution

of this force feedback to the absorption characteristics of the wavemaker and

contrast this against using different combinations of control coefficients.

Force feedback wavemakers could be compromised if current was introduced into

the wave flume and the fluid current impinged upon the wavemaker surface. It

would be interesting to quantify this effect and also quantify the effect that this

would have on non force feedback wavemakers. The non force feedback wavemak-

ers might provide a better choice, with more stable performance but with slightly

less absorption level qualities.
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Investigate other CFD solvers that use alternative free surface models to Volume

of Fluid. This thesis has shown that wave height attenuation affects two commer-

cial CFD solvers that implement the Volume of Fluid numerical scheme. It seems

that this problem is endemic to many commercial CFD solvers that use Volume of

Fluid. CFD has the potential to act as a hugely useful tool to the design engineer.

Especially if it could be used as a numerical wave tank. The problems of wave

height attenuation could be due to the numerical damping introduced into the

solver, in order to keep the solution stable. Solvers that do not use the volume of

fluid not need to introduce fictitious damping for a stable solution. These solvers

could over come the problem of wave height attenuation offer the potential to

implement a numerical wave tank using a Navier-Stokes solver, providing large

benefits to industrial users.



Appendix A

CFX preliminary temporal and

spatial study

This appendix details a preliminary study into spatial and temporal discretisation

and different numerical methods, using ANSYS CFX to model a wavemaker and

wave propagation in a 2D wave flume. The initial mesh spacings were taken from a

study using CFX to analyse a wave train behind a submerged hydrofoil (Gretton

et al., 2010). Formal grid convergence analysis, as laid out in Chapter 5 will

be followed, and investigations into mesh spacing and other numerical options

will be explored to investigate the sensitivity of the results to changes in these

parameters.

A.1 Wave generation

An oscillating wall boundary condition was implemented to generate a propagat-

ing wave through the test domain. This is analogous to, the well studied, physical

wave flume present in many hydrodynamic laboratories around the world. The

publication by Havelock (1929) is widely considered as the foundation of wave-

maker theory with further work published on the theoretical and practical con-

siderations by Biesel and Suquet (1951), Dean and Dalrymple (1991) and Hughes

(1993). Wavemaker theory has allowed experimentalists to obtain an analytic

solution to the far field wave elevation for a given wavemaker displacement.

The general first-order solution for a piston wavemaker yields the ratio between

the far field wave height and stroke displacement as (Hughes, 1993)

H

So
=

4 sinh2 kh

sinh 2kh+ 2kh
(A.1)
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where, H is the wave height, So is waveboard stroke, h is the water depth and k

is the wave number, which in deep water conditions approximates to 2π
λ

.

X =
So
2

sin(ωt) (A.2)

where ω is the frequency. This was chosen as 1[Hz], thus yielding a wave period

of 1[s].

A.2 Numerical Set up

These simulations were carried out using the same solver, ANSYS-CFX, using

the same setup as set out by Gretton et al. (2010). The main difference is that

this run was a transient simulation. The boundary conditions on the bottom,

the wavemaker and the back wall were No-Slip, the top boundary was set as an

opening, with the static pressure for entrainment option selected and two symme-

try conditions on the side walls for a 2-D simulation. Homogeneous multiphase,

with second-order transient and coupled volume-fraction solution options were

also selected.

A.3 Grid design for wave tank

The grids were constructed using the grid generation package ICEM. This was

used to generate a simple rectangular box and populated with a structured mesh.

The wave tank geometries were normalised, based upon a 1[Hz] wave in deep

water thus resulting in a wavelength of λ = 1.56m. The overall length of the wave

tank was 14λ, this was consisted of three regions. The first region closest to the

wavemaker wave one wavelength long. This region had mesh motion enabled to

capture the movement of the piston wavemaker, analogous to that of a hydro-

dynamic laboratory. As mesh motion is an inherently diffusive process, this only

motion was limited to a distance of one wave length from the piston wavemaker

thus having a stationary mesh over most of the domain. A stationary grid of 6λ

then made up the area of interest, a 7λ wave tank. The last section is referred to

at the ’dissipation’ zone, similar to that used with the air-foil. This region had

a stretched mesh which allowed the ∆x spacing to be equal to that of the wave

length, thus filtering out these waves.
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Table A.1: Courant numbers and time step selection

Courant No. Coarse Medium Fine
8.8 1/25 [s] 1/50 [s] 1/100 [s]
4.4 1/50 [s] 1/100 [s] 1/200 [s]
2.2 1/100 [s] 1/200 [s] 1/400 [s]
1.1 1/200 [s] 1/400 [s] 1/800 [s]

Table A.2: Grid refinement mesh spacing

Coarse Medium Fine

cells / λ 25 50 100
cells / H 20 40 80

A.4 Temporal Discretization

The time step was chosen with the Courant Friedrichs Lewy condition (CFL

condition) in mind. While CFX is a fully implicit solver, and the CFL condition

is a limiting factor for explicit schemes, choosing the time step based upon the

CFL still has it’s merits. For a two dimensional case the Courant number can be

obtained as
ux∆t

∆x
+
uy∆t

∆y
= υ (A.3)

where ux is chosen as the maximum velocity that information travels in the X

direction. This was chosen as the phase velocity of the wave train, and not the

group velocity which is only half the value of phase speed in deep water. uy is the

maximum particle velocity in the Y direction ∆t is the time step, and ∆x and ∆y

are the grid spacings in X and Y respectively.

Four different courant numbers were chosen.

A.5 Spatial Discretization

Following Roache (1998), a formal grid independence study was carried out using

three separate grids. Each successive grid adhered to a constant refinement ratio

which saw a halving in the node spacing from the coarse to the medium grids,

and likewise from the medium to fine grids. This allowed for the calculation of

various convergence metrics and for a Richardson extrapolation to be carried out.
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A.5.1 One Dimensional Refinement

A uni-directional grid dependence study was conducted to gauge the sensitivity

of the results to grid refinement in the Y direction and the X direction. The

effect on the free surface can be seen in Figures A.1 and A.2. This compares the

uni-directional refinement to the omni-directional refinement. It can be seen that

the free surface is far more sensitive to changes in ∆x than ∆y. This suggests

that the initial guesses for mesh spacing (table A.2) over estimated the amount of

refinement needed in the vertical direction to capture the free surface accurately.

This implies that the initial guesses were overly conservative. More efficient use

of computational time could be had with extra ∆x refinement.
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Table A.3: Grid convergence analysis for the surface elevation. This considers
the first six waves, as indicated by the grouping in the table. This values are
obtained using a CFL number of 1.1

Value trough disp. crest disp. wave height zero crossing wave length

Coarse −0.034 0.035 0.069 1.221 1.620
−0.029 0.032 0.061 2.841 1.661
−0.026 0.027 0.053 4.502 1.597
−0.024 0.028 0.052 6.098 1.610
−0.023 0.022 0.045 7.709 1.522
−0.018 0.020 0.038 9.230 1.542

Medium −0.036 0.039 0.076 1.211 1.608
−0.034 0.037 0.071 2.819 1.593
−0.033 0.036 0.069 4.412 1.589
−0.033 0.034 0.067 6.001 1.571
−0.031 0.033 0.065 7.572 1.570
−0.030 0.032 0.062 9.142 1.559

Fine −0.037 0.042 0.079 1.198 1.584
−0.035 0.040 0.075 2.781 1.606
−0.035 0.039 0.074 4.388 1.577
−0.035 0.040 0.074 5.965 1.599
−0.034 0.037 0.071 7.563 1.623
−0.033 0.038 0.070 9.187 1.575

R 0.114 0.691 0.466 1.338 2.115
0.137 0.823 0.439 1.752 −0.194
0.226 0.353 0.298 0.277 1.459
0.236 0.755 0.471 0.376 −0.701
0.295 0.381 0.344 0.067 1.112
0.203 0.487 0.344 −0.503 0.944

p 3.134 0.532 1.102 −0.420 −1.081
2.870 0.282 1.187 −0.809 −
2.146 1.504 1.746 1.850 −0.545
2.086 0.405 1.085 1.413 −
1.763 1.392 1.538 3.899 −0.153
2.301 1.038 1.538 − 0.083

Richarson extrapolated −0.037 0.043 0.080 1.193 1.576
−0.035 0.041 0.077 2.769 1.611
−0.035 0.040 0.076 4.379 1.573
−0.035 0.041 0.076 5.952 1.608
−0.035 0.039 0.074 7.560 1.641
−0.034 0.040 0.073 9.201 1.580

GCImc 0.012 0.300 0.099 −0.041 −0.017
0.031 0.674 0.134 −0.022 −
0.077 0.177 0.126 0.010 −0.020
0.098 0.773 0.253 0.012 −
0.138 0.261 0.198 0.002 −0.382
0.127 0.450 0.256 − 0.230

GCIfm 0.001 0.193 0.044 −0.056 −0.036
0.004 0.506 0.055 −0.040 −
0.017 0.057 0.035 0.003 −0.030
0.022 0.507 0.108 0.005 −
0.038 0.088 0.062 0.000 −0.410
0.024 0.185 0.078 − 0.215

GCImc/(r
pGCIfm) 1.008 1.074 1.042 0.989 0.985

1.022 1.096 1.060 0.987 −
1.048 1.092 1.071 0.994 0.993
1.060 1.151 1.107 0.994 −
1.078 1.129 1.104 0.999 1.034
1.081 1.185 1.134 − 1.010

a An R value −1 < R < 1 suggests oscillatory convergence
b An R value > 1 suggests divergence
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Table A.4: Grid convergence analysis for the surface elevation. This considers
the first six waves, as indicated by the grouping in the table. This values are
obtained using a CFL number of 2.2

Value trough disp. crest disp. wave height zero crossing wave length

Coarse 3 −0.033 0.035 0.068 1.217 1.620
−0.029 0.032 0.061 2.837 1.656
−0.026 0.027 0.053 4.494 1.596
−0.024 0.028 0.052 6.089 1.603
−0.023 0.022 0.045 7.692 1.525
−0.018 0.020 0.038 9.217 1.535

Medium 2 −0.036 0.039 0.075 1.207 1.609
−0.034 0.036 0.071 2.816 1.590
−0.033 0.035 0.068 4.406 1.582
−0.032 0.033 0.065 5.988 1.572
−0.031 0.032 0.063 7.560 1.560
−0.029 0.031 0.060 9.121 1.555

Fine 1 −0.036 0.042 0.078 1.203 1.593
−0.035 0.040 0.075 2.797 1.589
−0.036 0.039 0.075 4.385 1.571
−0.035 0.040 0.074 5.956 1.581
−0.034 0.039 0.074 7.537 1.578
−0.034 0.038 0.072 9.115 1.567

R 0.001 0.702 0.412 0.359 1.401
0.167 0.816 0.442 0.906 0.020
0.453 0.469 0.462 0.237 0.823
0.351 1.089 0.671 0.316 −0.275
0.428 0.705 0.584 0.179 0.498
0.447 0.691 0.568 0.059 0.628

p 9.689 0.510 1.279 1.480 −0.487
2.582 0.294 1.177 0.143 5.639
1.143 1.093 1.115 2.078 0.281
1.510 −0.122 0.575 1.664 −
1.225 0.503 0.777 2.486 1.007
1.162 0.532 0.817 4.077 0.672

Richardson extrapolated −0.036 0.043 0.079 1.202 1.588
−0.036 0.041 0.076 2.790 1.588
−0.037 0.040 0.077 4.378 1.567
−0.036 0.042 0.077 5.946 1.583
−0.035 0.042 0.077 7.529 1.584
−0.036 0.040 0.076 9.113 1.571

GCImc 0.000 0.311 0.082 0.006 −0.030
0.039 0.606 0.132 0.092 0.001
0.210 0.260 0.236 0.008 0.050
0.160 −2.675 0.521 0.010 −
0.237 0.931 0.496 0.005 0.028
0.376 0.975 0.591 0.001 0.026

GCIfm 0.000 0.204 0.032 0.002 −0.043
0.006 0.453 0.055 0.084 0.000
0.087 0.110 0.099 0.002 0.041
0.052 −2.448 0.308 0.003 −
0.091 0.539 0.248 0.001 0.014
0.144 0.543 0.278 0.000 0.016

GCImc/(r
pGCIfm) 1.000 1.074 1.038 0.997 0.990

1.026 1.089 1.059 0.993 0.999
1.092 1.110 1.102 0.995 0.993
1.083 1.189 1.137 0.995 −
1.108 1.219 1.165 0.997 1.011
1.166 1.241 1.204 0.999 1.008
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Table A.5: Wave peaks following Y direction grid refinement

λ1 λ2 λ3 λ4 λ5 λ6

40 cells/h [m] 0.03867 0.03532 0.03466 0.03297 0.03234 0.03080
20 cells/h [m] 0.03842 0.03509 0.03440 0.03275 0.03201 0.03057
Difference [m] -0.00025 -0.00022 -0.00026 -0.00021 -0.00033 -0.00023
% Change -0.65% -0.63% -0.75% -0.65% -1.02% -0.74%
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Figure A.2: Free surface comparison looking at x directional refinement.

Table A.6: Wave peaks following X direction grid refinement

λ1 λ2 λ3 λ4 λ5 λ6

50 cells/h [m] 0.03867 0.03532 0.03466 0.03297 0.03234 0.03080
25 cells/h [m] 0.03566 0.03274 0.03099 0.02836 0.02668 0.02436
Difference [m] -0.00301 -0.00258 -0.00368 -0.00461 -0.00566 -0.00644
% Change -7.79% -7.3% -10.6% -13.98% -17.49% -20.91%
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Table A.7: Convergence stopping criteria sensitivity

λ1 λ2 λ3 λ4 λ5

Peaks at 10× 10−5 0.039 0.036 0.035 0.033 0.032
Peaks at 5× 10−5 0.039 0.037 0.036 0.034 0.033
Peaks at 1× 10−5 0.039 0.037 0.036 0.035 0.034
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Abstract
For most of the twentieth century naval hydrodynam-

ics, and more recently, wave energy hydrodynamics have
been limited to the realms of theory and physical ex-
periments. Both of these methods of fluid flow analysis
are constrained through scope, cost and size of facility.
The advent of high speed digital computing has brought
with it a new dimension for analysing fluid flows, that
of numerical modelling. This paper aims to harness this
progress in computing power and established commer-
cial computational fluid dynamics (CFD) codes to cre-
ate a numerical analogue to the physical test flumes that
are in operation in many hydrodynamic labs. Using nu-
merical wavemakers will allow for the use of different
shaped wavemakers that would be otherwise impossi-
ble to implement in a physical waveflume, these non-
conventional shapes will be investigated.

This paper presents the well established wavemaker
theory. This is then adapted to obtain the hydrody-
namic coefficients of added mass and damping for two
novel shaped wavemakers. The different wavemaker ge-
ometries are compared on the basis of their theoretical
wave absorption efficiencies at various tuned frequen-
cies. Wavemaking simulations using ANSYS CFX are
then presented and the results are discussed.

Keywords: Wavemaker, CFD, absorption, added mass, damp-
ing.

1 Introduction
A general theory for the generation of waves by oscil-

lating solid boundaries was first prestented by Havelock
[1] and is widely considered as the foundation of wave-
maker theory. Building upon this knowledge, Les Ap-
pareils Générateurs de Houle en Laboratoire published
by Biésel and Suquet [2] (later to be translated into En-
glish [3]) was a huge advancement in laboratory gener-
ated waves. It solved the analytical problem for a num-
ber of different wavemakers and geometries providing
a transfer function relating the wave paddle displace-

c© Proceedings of the 8th European Wave and Tidal Energy
Conference, Uppsala, Sweden, 2009

ment to the propagating wave amplitude. This linear
transfer function has been confirmed through theoretical
and experimental comparison [4],[5]. Building on these
transfer functions Gilbert et al.[6] presented analysis of
dimensionless values for the forces and paddle strokes
which was used in the construction of the first wave tank
at the University of Edinburgh.

A major problem encountered with wave tanks is that
of wave re-reflections spoiling the test domain. Passive
wave absorbers dealt with impinging waves adequately
but problems with re-reflections from the wave makers
and test devices persisted. In an attempt to show that it is
possible to move a paddle in a manner that absorbs inci-
dent waves, Milgram [7] published his paper on “Active
water-wave absorbers”. Milgram concluded that in the
synthesis of a wave-absorbing system four criteria must
be met: The complete system must be stable. Drift of the
paddle must be prevented by the absorbing system and
have zero response at a frequency of zero. To prevent
high frequency noise, the absorbing system subfunction
should be less than the hydrodynamic system function.
And obviously, the reflection coefficient should be less
than one for all frequencies. Milgram used surface ele-
vation for the active feedback mechanism. He suggests
that the exerted force acting on the paddle would be at-
tractive to operate on but points to physical constraints
in his specific flume. There was a short fluid filled space
behind the wave paddle. The fluid motion in this small
space would complicate calculations through resonance
at certain frequencies, thus he concluded that it was not
practical to activate the paddle on the basis of measured
force. The surface elevation a short distance from the
wave paddle was used instead. Milgram conducted ex-
perimental work to compare the measured and predicted
wave reflection coefficients. Absolute reflection coeffi-
cients in the range of 2 % to 11 % were reported for fre-
quencies between 1 to 4 Hz. It should be noted that this
active absorber was not used in a combined generation
and absorption mode.

Unaware of Milgrams work on wave absorption,
Salter [8] proceeded to obtain an active wave maker us-
ing force measurement. Salter cited three advantages
to this method. Force is an integral quantity measured
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over the entire wave maker front and using this mea-
surement minimises any slight errors encountered with
single point measurements. Force sensors can be en-
tirely free from the chemical and biological vagaries
of tank water. Most types of tank probes use either
resistive gauges or capacitance gauges. Both of these
are susceptible to corrosion, biological growths, oil and
dust residues, all of which require frequent re-calibration
which is unacceptable for a large array of wave mak-
ers. Finally, Salter cites the conservation of energy as
another reason to choose force feedback. He states that
the advantage of using a force measurement is its ease
in combing it with a velocity measurement and therefore
fixing the rate of energy given to the water. He argues
that it is “better to provide the right amount of energy at
each frequency than to try to enforce a sinusoidal form
that the waves do not like”. Thus controlling energy
bypasses many of the non-linearity problems that arise
when generating steep waves.

In numerical wave tanks, many methods exist to try
and cope with reflected waves using purely mathematical
methods. The periodic boundary condition is where the
solution is assumed to be periodic in space, so that the
values of the unknowns on one vertical boundary can be
to equal those on the other vertical boundary of the do-
main. Another technique used to simulate infinite outer
fields at finite distance is that of artificial damping also
referred to as sponge layers. This is the process of apply-
ing a dissipative term to the equations near the boundary
of the truncated domain. This dissipative term can be
added to the free surface boundary condition as well as
both the dynamic and kinematic boundary conditions. A
novel approach was adopted by Orlanski [9] where he
imposed Sommerfeld’s condition on the boundary. The
main advantage of this approach was that no information
on the frequency of the approaching waves was needed.
The Sommerfeld-Orlanske is probably the most widely
used technique for numerical absorption of waves [10].
As this research hopes to create an numerical analogue
to physical paddles, the method for dealing with wave re-
reflections will be using a physically realisable method,
namely that of force-feedback. For a more in depth dis-
cussion on numerical absorption boundary conditions,
please consult Romante [10] for a detailed review.

Research from the Laboratoire de Mécanique de Flu-
ide at École Centrale de Nantes has been published re-
garding a realisable control strategy for active absorb-
ing wave makers. Maisondieu and Clement [11] were
the first to publish their results on a force feedback-
feedforward control loop for a piston wave absorber.
They considered the problem of absorption of water
waves by the horizontal motions of a vertical plane in re-
sponce to the hydrodynamic forces it experiences. They
are quick to point out that a solution to this in the fre-
quency domain is relatively easy, but upon implementa-
tion of an inverse Fourier transform the solution becomes
a non-causal impulse response function. In their paper
they propose to model the ideal controller by a causal
approximation. They compare their new control strat-

egy for two conditions, when one knows the dominant
frequency in the incident waves and when one does not.

This publication was quickly followed up with an-
other publication [12] on the same matter, conducting
a comparison of time domain control laws for this pis-
ton wave absorber. Again this paper concentrated on the
derivation of efficient time domain control strategies for
the absorption of waves by a vertical paddle. This pa-
per suggests two causal non-ideal approximations of the
ideal non-causal controller. This method proved very
promising at low frequencies, when one can identify a
dominant frequency in the incident wave train a priori

Building on this published work Chatry and Clement
[13] proposed a self-adaptive control of a piston wave
absorber. This paper derived sub-optimal approxima-
tions similar to Maisondieu and Clement [11] but as the
previous study showed better performance when the in-
cident wave frequency was known, a self-adaptive tuner
was developed hoping to maintain the system frequency
to the optimal one. It is based on a frequency tracking ex-
tended Kalman filter algorithm and a feedforward loop.
The efficiency of the controllers was measured by nu-
merical experiments. It was found that this self-adaptive
feedforward feedback system performed very well over
a broad frequency range.

Newman [14] produced analysis of wave generation
and absorption within the framework of linear potential
theory. He derives relations that govern the control of
the absorbers in an attempt to eliminate reflected waves
from the walls of the basin. He sets out the theory behind
control of wavemaking and absorbing in two-dimensions
and progresses to extend this to the three-dimensional
case. This paper encompasses the theoretical framework
and analysis of the obtained results. It deals with con-
ditions for optimisation of two-dimensional wavemakers
in two and three dimensions. It then investigates the ef-
fects of including a floating body in the computational
domain. Later in the paper two-dimensional wavemak-
ers are analysed in the time domain.

In a recent paper, Spinneken and Swan [15] discuss
causal approaches for controlling active wavemakers.
Their technique is based upon infinite impulse response
filters and they show that optimisation of this controller
results in very good levels of absorption. They compare
their results to the techniques of Naito [16] and ECN
showing better performance with their control strategy.

2 Hydrodynamic coefficients of a wave-
maker in a channel

Following the method used by Falnes [17, sect 5.2.3],
let us consider a physical model shown in figure (1).
Cartesian coordinates, x,y,z, are used, with z = 0 on the
still water level and the +ve zaxis directed upwards. This
is a 2D piston, in a water depth, h, that can oscillate in
surge. When any body oscillates in water a radiated wave
with a velocity potential, φr is generated. This will be a
linear combination of the six modes of oscillation giving
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Figure 1: Two-Dimensional Wave Flume Definition Sketch

[17];

φ̂r =
6

∑
j=1

ϕ jû j (1)

where ϕ j is a complex coefficient of proportionality. In
the case shown, the piston motion is limited to surge ( j =
1). If the piston has a complex velocity with complex
amplitude û1 6= 0, then according to the inhomogeneous
boundary condition

∂ϕ1

∂x
= c(z) f orx = 0 (2)

where c(z) is a function that defines the shape profile
of the wavemaker. The general form of c(z) for a two-
dimensional wavemaker is

c(z) =
(

1+
z

h+ l

)
(3)

where l is the hinge depth. As l → ∞, c(z) corresponds
to the surface profile of a piston (c(z) = 1) or as l → 0
the profile is that of a bottom hinged paddle (c(z) = 1+
z
h ) Following Havelock [1] and Falnes [17] , ϕ1 can be
represented as

ϕ1 = c0Z0(z)e−ik0x +
∞

∑
n=1

cnZn(z)e−knx =
∞

∑
n=0

Xn(x)Zn(z)

(4)
where

Xn(x) = cneknx (5)

Here, kn is the solution to the dispersion relationship for
n ≥ 1 and conveniently letting k0 = ik [17]

ω2 =−gikn tanh(−iknh) (6)

Making use of the boundary condition (eqn. 2) gives

c(z) =
[

∂ϕ1

∂x

]
=

∞

∑
n=0

X ′
n(0)Zn(z) (7)

As Falnes [17] shows, multiplying by the complex con-
jugate, Z∗m(z) and integrating from z =−h to z = 0 while

using orthogonality condition gives
∫ 0

−h
c(z)Z∗m(z)dz =

∞

∑
n=0

X ′
n(0)

∫ 0

−h
Z∗m(z)Zn(z)dz = X ′

m(0)h

(8)
That is,

X ′
n(0) =

1
h

∫ 0

−h
c(z)Z∗n(z)dz (9)

Combining equation (9) and equation (5) yields

X ′
0(0) = ik0c0, X ′

n(0) = kncn (10)

Thus giving the two coefficients

c0 =
−1
ik0h

∫ 0

−h
c(z)Z∗0dz (11)

cn =
−1
knh

∫ 0

−h
c(z)Z∗ndz (12)

The orthogonal set of eigenfunctions Zn(z) are given as
[see 17, chap. 4.2]

Z0 = (N0)−1/2 cosh(k0(z+h)) (13)

Zn = (Nn)−1/2 cos(kn(z+h)) (14)

where

N0 =
1
2

(
1+

sinh(2k0h)
2k0h

)
(15)

Nn =
1
2

(
1+

sin(2knh)
2knh

)
(16)

The radiation impedance of the wavemaker in a two-
dimensional channel acting in surge is given by Falnes
[17]. The term R j′ j is the radiation resistance matrix or
added damping. X j′ j is the radiation reactcance matrix
and m j′ j is the added mass.

Z j′ j = R j′ j + iX j′ j

= R j′ j + iωm j′ j

Z11 = iωρd
∫ 0

−h

[
ψ1

∂ϕ∗
1

∂x
dz
]

x=0
dz (17)

Thus, the impedance per unit width

Z11

d
= iωρ

∫ 0

−h

[
c0Z0(z)+

∞

∑
n=1

cnZn(z)

]
c∗(z)dz

Z′11 = iωρ

[
c0(−ik0h)c∗0 +

∞

∑
n=1

cn(knh)c∗n

]

= ωk0ρh|c0|2 + iωρh
∞

∑
n=1

kn|cn|2 (18)

The radiation resistance, R11, or added damping is the
real part of eq.18

R11 = ℜ{Z11}= ωk0ρhd|c0|2 (19)

and the added mass, m11, is the imaginary part of eq.18

m11 = ℑ{Z11}= ρhd
∞

∑
n=1

kn|cn|2 (20)
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2.1 Derivation of added mass and damping for a
bottom hinged paddle

As can be seen, both the added mass and damping are
functions of c0 and cn respectively. These parameters
are in turn functions of the shape parameter, c(z). Thus
for different paddle shapes, the added mass and added
damping will vary significantly. The two main shapes of
concern, in a physical wavemaker, are that of a piston
(c(z) = 1) and a bottom hinged flap (c(z) = 1 + z/h).
The following equations are a derivation of the added
mass and damping for the latter, a bottom hinged flap.
This derivation was not presented by Falnes [17], but the
added mass and damping coefficients agree with those
presented by Newman [14] for a bottom hinged flap.

From equation (11) and using equation (13)

c0 =− 1
ik0h

N−1/2
0

∫ 0

−h
(1+ z/h)cosh(k0(z+h))dz

=− 1
ik0h

N−1/2
0

1+ k0hsinh(k0h)− cosh(k0h)
k0

2h
= i(1+ k0hsinh(k0h)− cosh(k0h))k0

−3h−2

(
1
2

+
1
4

sinh(2k0h)
k0h

)−1/2

(21)

R11 = ωk0ρhd|c0|2

= 4
ω ρ (1+ sinh(k0h)k0h− cosh(k0h))2

k0
4h2 (2k0h+ sinh(2k0h))

(22)

Similarly, from equation (12) and using equation (14)

cn =− 1
knh

N−1/2
n

∫ 0

−h
(1+ z/h)cos(kn(z+h))dz

=
1

knh
N−1/2

n
−1+ cos(kn h)+ kn hsin(kn h)

kn
2h

= (−1+ cos(knh)+ knhsin(kn h))kn
−3h−2

(
1
2

+
1
4

sinh(2kn)
kn

)−1/2

(23)

m11 = ωρhd
∞

∑
n=1

kn|cn|2

= 4ρ
∞

∑
n=1

(−1+ cos(knh)+ sin(knh)knh)2

kn
4h2 (2knh+ sin(2knh))

(24)

2.2 Added mass and damping coefficients for differ-
ent paddle geometries

As shown in section 2.1 the added mass and damping
are dependant on the wavemakers geometry. The fol-
lowing results show the added mass (m11) and damping
(R11) for four different geometries. The standard piston
and bottom hinged geometries that are widely used in
many hydrodynamic laboratories around the world. Also
included are coefficients for a hyperbolic paddle which
matches the boundary condition of the wave velocity
profile. This results in a wave maker with no evanes-
cent modes, thus no local waves, at one particular wave
frequency. The other is the unique case of a wavemaker

with no progressive waves, just a local standing wave.
These situations of no progressive waves and no evanes-
cent waves are difficult to achieve in a physical wave
flume but could be more easily achieved in a numerical
model.

2.2.1 Piston Wavemaker

The unit displacement of a two-dimensional piston-
type wave maker is c(z) = 1. Under oscillations corre-
sponding to equation (1) this results in the entire bound-
ary moving in unison, as would be expected. Following a
the derivation outlined in section 2.1 the following added
mass and damping were obtained in a similar manner.

m11 = 4
∞

∑
n=1

ρ
(

1− (cos(knh))2
)

kn
2 (2knh+ sin(2knh))

(25)

R11 = 4
ω ρ

(
(cosh(k0h))2−1

)

k0
2 (2k0h+ sinh(2k0h))

(26)

2.2.2 No local waves

For there to be no local or evanescent waves, there
should be no added mass. This can be achieved if the
paddle velocity matches that of the wave field. This is
done by setting the unit displacement to

c(z) =
cosh(kp(z+h))

cosh(kph)
(27)

It should be noted that the wave number, kp, is fre-
quency dependant and therefore this wavemaker will
have no added mass at only one chosen frequency - the
frequency corresponding to the respective wavenumber
value, kp = k(ωp). The resulting added mass and damp-
ing are

m11 =
∞

∑
n=1

ρ e−c

(
(kpec− kpeb+c− kpeb + kp

(2knh− isinh(c))(eb +1)2

−ikn + ikneb+c− iebkn + iknec)2

(
kp

2 + kn
2)2

)
(28)

R11 = ω ρ

(
(k0e−i(b+ia)− k0 + eak0− k0e−ib

4(a+ sinh(a))(cos(b/2))2

−e−ibkp + kp + eakp− kpe−i(b+ia))2

(
kp

2− k0
2)2

)
ei(b+ia) (29)

where the substitution of a = 2k0h, b = 2ikph and c =
2iknh have been. As mentioned, for there to be no
evanescent waves, the added mass should be zero (at
that specific frequency defining the shape kp(ω) for
ω = π,2π,3π , which is the case (figs. 2a,2b,2c)
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Figure 2: Hydrodynamic coefficients, added mass, top and damping, bottom, for piston, bottom hinged flap, no evanescent waves
and no progressive wave wavemakers. The no evanescent and no progressive wavemakers are for three different geometries based
on wave numbers k(ωp, j) for ωp, j = π,2π,3π

2.2.3 No progressive waves

This is another special case were the paddle will move
in such a way that only an evanescent wave will be
present. This would be very difficult to achieve in a
physical wave maker, but could be more easily achieved
in a numerical code. For this to occur, the wavemaker
needs to move according to the following c(z) in the case
of n = j where j is a single solution to equation (6)

c(z) =
cos(k j(z+ k))

cos(k jh)
(30)

Again, the the geometry is dependant on the selection
of a wave number at a particular frequency, k j = k j(ω j).
This choice of c(z) results in the upper and lower parts of
the vertical wall oscillating out of phase with each other.
The number of oscillations between the bottom of the
tank and still water lever (SWL) depends on the choice
of j. The resulting added mass and damping are given as

m11 = 4ρ
(−k j sin(k jh)cos(knh)

(2knh+ sin(2knh))(cos(k jh))2

+kn cos(k jh)sin(knh))2

(
−k j

2 + kn
2)2 (31)

R11 = ωρ

(
(−k0ea+b + k0eb− k0ea + k0− ik j

4(a+ sinh(a))
(
cosh

( b
2

))2

+ik jeb− ik jea + ik jea+b)2e−a−b

(
k0

2 + k j
2)2

)
(32)

where the substitution of a = 2k0h and b = 2ik jh have
been made.

For the three different geometries based upon choice
of k j(ω) for ω = π,2π,3π it can be seen (figs. 2d,2e,2f)
that the damping is zero at these frequencies. For all of
these solutions, j = 1 resulting in just one oscillation be-
tween the tank bottom and SWL increasing the value of j
will, in turn, increase the number of oscillations between
the SWL and the bottom of the flume.

The non-dimensionalised added mass and damping
coefficients for all four shapes are shown in figure (2).

3 Basic Theory of Wave Absorption
3.1 Absorption efficiency

A concept used by Naito [16] and presented further
by Spinneken [15] is that of absorption efficiency. Naito
[16] presented an absorption coefficient, Ce(ω) measur-
ing the power absorbed by the external mechanism. The
condition of causality was discussed and a power absorp-
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tion with fixed coefficients Cec was also presented. This
resulted in less than all of the available power being ab-
sorbed in irregular waves as the system was only opti-
mised for one frequency.

According to Falnes [17] the intrinsic impedance, Zi
can be represented as

Zi(ω) = R(ω)+ i
(

ω [M +m(ω)]− c
ω

)
(33)

Where M is the mass of the paddle, c is the spring stiff-
ness, m(ω) and R(ω) are added mass and damping, re-
spectively, and where the subscripts for surge have been
omitted

Following the same author and many others, the opti-
mum control force occurs when the control impdance, Zu
equals the complex conjugate of the intrinsic impedance

Zu(ω) = Z∗i (ω) = Zu,OPT (ω) (34)

Thus,

Zu,OPT (ω) = R(ω)− i
(

ω [M +m(ω)]− c
ω

)
(35)

and under a fixed coefficient system tuned to ω = ωp,

Zu,OPT (ωp) = R(ωp)−
(

i
[

ωp (M +m(ωp))−
c

ωp

])

(36)

= Rp−
(

i
[

ωp (M +mp)−
c

ωp

])
(37)

where Rp and mp denotes fixed coefficients at ω = ωp
Under a two coefficient (ru and cu) control system,

the control force in the time domain is represented as

fu(t) = ruu(t)+ cux(t) (38)

and thus the impedance in the frequency domain is

Zu(ω) = ru +
cu

iω
(39)

and optimising equation (39) at a single frequency, ωp,
results in

Zu(ωp) = ru−
icu

ωp
(40)

Price [18] compared equations (36) and (40) showing
control coefficients of

ru = Rp (41)

cu =
(
ω2

p(M +mp)− c
)

(42)

replacing back into equation (39), [18] presented the
tuned control impedance at ωp, with two control settings,
over the full range of frequencies as

Zu(ω) = Rp−
i
ω
[
ω2

p (M +mp)− c
]

(43)

Falnes [17] shows that the absorbed useful power is
given as

Pu =
1
2

ℜ [Zu(ω)]
| ˆFe, j|2

|Zi(ω)+Zu(ω)|2

=
Ru(ω)| ˆFe, j|2/2

[Ri(ω)+Ru(ω)]2 +[Xi(ω)+Xu(ω)]2
(44)

Setting the control impedance, Zu(ω) to the complex
conjugate of the intrinsic impedance Z∗i , namely setting
the variables Ru(ω) and Xu(ω) to their optimum values
of Ri(ω) and −Xi(ω) gives an expression for the maxi-
mum power

Pu,max =
|F̂e, j|2

8Ri
(45)

Combining these equations (eqns 44,45), the absorption
coefficient, similar to that of Naito [16] and Spinneken
[15], for a fixed coefficient system can be shown as

Pu

Pu,max
= 4

Ru(ω)Ri(ω)

(Ri(ω)+Ru(ω))2 +(Xi(ω)+Xu(ω))2

(46)

Using equations (33,36) the power absorption ratio can
be represented as

4ω2RpR(ω)

ω2 [Rp +R(ω)]2 +
[
(ω2−ω2

p)M +ωm(ω)−ω2
pmp

]2
(47)

3.2 Absorption for different wavemakers

Absorption ratios, Pu/Pu,max, for different wavemaker
shapes (Piston, Bottom hinged Paddle, No Evanescent
waves, No Progressive Waves) are shown in figure (3).
These figures compare the fraction of waves that can be
theoretically absorbed equation (46) by the four different
wave makers with different choices of tuning frequency
and shape frequency. For the piston and paddle shaped
wavemakers, the only handle on control is by setting the
tuning frequency ωp. For the other two types of wave
maker - their shape parameter c(z), is a function of wave
number and thus frequency dependant. For these wave-
makers a second control variable, k j and kp is available.
Both of these control handles are varied from 0.5 Hz and
1.5 Hz. This range of frequencies is comparable to that
of the tank used at Edinburgh University, and most tanks
used in small scale hydrodynamic laboratories.

The absorption characteristics for piston and flap
wavemakers only varies due to a change in tuning fre-
quency, ωp. When the shape function is set to kp, j(ω) =
kp, j(π) the bottom hinged paddle attains the highest ab-
sorption, followed by the hyperbolic paddle with kp =
k(π) (eqn.27) and then piston wave maker. The rea-
son for this is setting the shape parameter to kp, j(ω) =
kp, j(π), results in a hyperbolic shape in between that of
a piston and a flap, thus explaining why the absorption
characteristics are in between that of the paddle and flap.

Outwith kp(ω) = kp(π) ,the hyperbolic shaped pad-
dle, with no evanescent waves (eqn.27), has better ab-
sorption characteristics than all other paddles regardless
of their tuning frequency. This is unsurprising as the hy-
perbolic profile matches that of the Airy’s velocity po-
tential more closely than that of the either the piston or
the flap. The big difference is that the hyperbolic shaped
paddle has two handles of control. That of the tuning fre-
quency, ωp similar to the flap and piston, but it also has
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Figure 3: Graphs showing the absorption coefficients ϑ for different tuning frequencies, ωp = π, 2π, 3π (columns) and different
geometry shapes kp, j(ω) for ω = π, 2π, 3π (rows)

a geometry control where the shape of the paddle can be
designed to minimise the evanescent waves at one spe-
cific frequency, thus resulting in two sweet spots of con-
trol at ωp and k(ωp). Having these two handles of con-
trol, tuning frequency and shape can result in a far wider
bandwith of absorption that would otherwise be achieved
using either a regular piston or flap wave maker (fig.3).

One of the interesting results occurs for the case
where the paddle is controlled in such a manner to have
no progressive waves. As can be seen, this paddle can
achieve some absorption when k j 6= ωp. When the ge-
ometry shape, k j(ω) is chosen such that ω = ω j, as is
the case in the diagonal of the 3x3 matrix in figure (3).
Under these conditions the absorption of the no progres-

sive wave paddle results in zero absorption. The reasons
for this can be attributed to the old addage, “a good wave
absorber is a good wave maker ”. As this wavemaker
cannot generate any progressive waves at this frequency,
it cannot radiate waves to cause destructive interference,
cancelling out the reflected waves thus there is zero wave
absorption.

4 CFD simulation of wavemaker
This section describes the methods used to generate

waves in a numerical wave tank using ANSYS CFX.
The dimensional values for the geometry of the nu-

merical wave tank (NWT) were chosen such to be com-
parable to those in Edinburgh’s long tank. The length of
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Table 1: Dimensions of grids used

Coarse Medium Fine
No. elements Y1 10 20 40

∆Y [m] 0.02 0.01 0.005
No. elements Y2 20 40 40
No. elements X 390 780 1560

∆X [m] 0.04 0.02 0.01
No. Nodes 38,318 157,762 377,762

No. Elements 18,720 78,000 187,200

the tank is l = 15.6[m] with a water depth of h = 0.8[m].
The desired wave has a period of 1 [s] and wave of am-
plitude 0.08 [m]. According to the wave dispersion rela-
tionship

λ =
g

2π
T 2tanh

2πh
λ

(48)

the wave length of such a wave is ≈ 1.56[m] with d/λ =
0.514 (deep water conditions). This results in the tank
being ten wavelengths long. The phase speed, c = λ

T ,
of these waves is 1.56[m/s], and the group velocity cg =
1
2 c = 0.78[m/s].

Three different grids were used to compare the effects
of refinement and to check for convergence, referred to
as coarse, medium and fine. The cell dimensions for the
initial coarse mesh were based upon the expected free
surface elevation and on the phase speed of the wave.
The remaining two meshs’ dimensions were iterative re-
finements of the coarse mesh. As the main area of in-
terest is the wave’s free surface, extra mesh refinement
is used in this region. This area of refinement extended
from ±0.1[m] around the SWL. The mesh distribution
in this area was uniform, the areas above and below this
region, extending to the NWT bottom and top opening,
have a stretched geometric distribution along a distance
of 0.7[m] (fig.4). Mesh dimensions for the three dif-
ferent meshes are as follows; For all grids, the domain
is split into two regions, one with a distance of a sin-
gle wavelength, λ from the paddle. This region allows
mesh motion. The other region, making up the rest of
the mesh is stationary (fig.4). This is was chosen after
advice and correspondence with CFX support. It was
said that mesh motion, by its very nature is a diffusive
process and will lead to unsatisfactory results. Mesh mo-
tion is needed in the region near the paddle to facilitate
the piston motion. CFX does not have an explicit two-
dimensional solver, so When modeling two dimensional
simulations it is recommended that the domain is set to
one cell thick and symmetry conditions placed on either
side. The modelling advice suggests that the thickness of
this cell should be comparable to the size of the smallest
cell.

The physics for the simulation were held constant.
Homogeneous multiphase, with second-order transient
and coupled volume-fraction solution were used in the
solver control. The only parameter to vary over the three
simulation runs was the time step. This was to ensure
that the CFL remained constant. In adherence to rec-
ommendations by CFX support, the CFL number was

Figure 4: Grid layout corresponding to table 1

Table 2: CFL number

Coarse Medium Fine
∆ t [s] 0.04 0.02 0.01
CFL 1.56 1.56 1.56

maintained between 1-2.

CFL =
∆tu
∆x

(49)

The paddle motion was ramped up over two seconds,
as such, the fully developed wave train should have trav-
elled the length of the flume at the group speed, cg of
0.78[m/s] thus taking no less than 22[s]. This was one
of the criteria examined when looking for the suitability
of CFX in handling free surface waves. Isosurface plots
with the volume fraction = 0.5 at every 1 second time
interval are shown in figure (5). It shows how the waves
travel down the flume for the three grids. The vertical
dotted line is placed at intervals of 1λ (1.56[m]).

4.1 Wave making results in CFX

Upon implementation of the aforementioned settings,
the coarse mesh (fig. 5a) showed large damping of the
progressive waves in the flume. The wave height de-
creased considerably and this decrease persisted over
time. Also, there seemed to be an unexpected increase
in the wave length of the generated waves. A wave of
period T = 1[s] was expected and under the water depth
conditions, a wave length of 1.56[m] was anticipated. As
can be seen, (fig. 5a) shows the wave crest getting pro-
gressively further apart.

The medium mesh (fig. 5b) doesn’t show as severe
damping of the free surface elevation as the coarse mesh,
but there is still some damping persistant. Again, the
waves generated seem to be of a longer wave length than
expected. This can be seen looking at the distance the
wave crest deviated from the vertical lines. These lines
are at one wave length λ = 1.56[m] intervals.
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(a) Coarse mesh

0 1.56 3.12 4.68 6.24 7.8 9.36 10.92 12.48 14.04 15.6

0

2

4

6

8

10

12

14

16

18

Propagation of wave train with T=1[s] (Amplitute x10), h=.8[m], λ = 1.56 [m]

(b) Medium mesh
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(c) Fine mesh

Figure 5: Wave train propagation over time for coarse, medium and fine mesh
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Figure 6: Wave propagation through flume with fine mesh over
20s, with time increasing in the Y+ axis direction. Lines show-
ing both group velocity and phase velocity also shown

The last refinement was that of the fine mesh (fig. 5c).
This shows a little improvement in capturing the free
surface elevation when compared to the medium mesh.
Overall, the fine mesh is very similar to the medium
mesh results. This suggests that CFX is converging,
but not on the expected answer. Upon closer analysis
of the free surface from the fine mesh, the damping of
the waves is more apparent (fig. 7). The expected wave
amplitude of 0.08[m] does not materialise. There is a
steady decline in wave amplitude which plateaus at 4
wavelengths. There seems to be a shift in wavelength
also in these simulations. The wave flume expected to
have exactly 10 fully developed waves after 20 [s] this
was not the case and there were only 9.5 full waves in
the flume.

In order to absorb waves, you must first be able to
make accurate and precise waves. This did not prove to
be the case in ANSYS CFX. There was persistant damp-
ing in the flume and an anomaly where there seemed to
be a shift in frequencies that resulted in longer wave-
lengths in the flume.

Current work includes investigation into other com-
mercial CFD codes and feasibility studies are underway.

5 Conclusions
In conclusion, this paper has presented the fundamen-

tal theory behind the wavemaking process. It has pre-
sented the hydrodynamic coefficients of added mass and
damping for four different paddle shapes. Two of these
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Figure 7: Free surface from fine mesh at 19 [s] and 20 [s]. NB
the shift in wave peak from time step 19[s] to 20[s] and also
the fact that each peak is no aligned with the predicted wave
length position

novel shaped wavemakers have been discussed how the
choice of geometry can effect the wave absorption espe-
cially in conjunction with tuning frequency. It has shown
the there is potential for improved absorption when the
both the geometry and the tuning frequency of a wave-
maker/absorber can be adjusted. Results from a solid
moving boundary in ANSYS CFX were presented and
the CFD simulations do not match the expected results.
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For most of the twentieth century, marine hydrodynamics has been limited to the two realms of theory and physical experiments. These methods of 
fluid flow analysis are limited through scope, cost and size of facility. The advent of high speed computing has brought with it a new dimension for 
analyzing fluid flows, that of numerical modelling. Computational Fluid Dynamics (CFD) has the potential to offer an invaluable design tool to 
marine engineers. One such tool that CFD offers, is the possibility for a numerical wave tank. Physical wave tanks are used in coastal engineering, 
naval engineering, offshore engineering and marine renewable engineering, but these facilities can be expensive and are limited in size and scale of 
the testing facility. A numerical wave tank can overcome these problems. But before any confidence can be placed in numerical results from a CFD 
code, a verification process should be conducted to assess both the coding and the mathematical calculations and the results should also be validated 
against a physical model or a known analytical solution. In this paper a commercial CFD code (ANSYS CFX) is assessed and verified for its 
suitability as a numerical wave tank. Both a temporal and spatial convergence study is conducted and the appropriate metrics analyzed. A validation 
procedure is implemented, comparing the obtained numerical solution to a known analytic solution using linear wave theory. 

Keywords: wavemaker; CFD; ANSYS CFX; Verification. 

1.   Introduction 

The methods used for the wave making process in the numerical code are analogous to those used in many 
hydrodynamic laboratories around the world. An oscillating wall boundary condition was used to generate a 
propagating wave through the test domain. This solid boundary is moved according to a prescribed displacement 
according to well known first order wavemaker theory (Havelock 1929, Dean and Dalrymple 1991, Hughes 1993, 
Maguire and Ingram 2011). The resulting free surface displacement is then used to perform a formal verification of 
the CFD simulations for both temporal and spatial discritizations (Roache, 1998). The wave parameters chosen for 
this were based upon typical values used for a hydrodynamic wave flume. The wave parameters chosen were a 
waveheight (H) of 0.08[m], Period (T) 1 [s] in a water depth (h) of 0.90 [m]. 
 
The numerical flume is chosen to be similar in dimension and scope to the physical wave flume at the University of 
Edinburgh and indeed many other hydrodynamic laboratories. The water depth of the flume was set to 0.75cm and the 
period of oscillation of the wavemaker set to 1s. According to the dispersion relationship the wavelength can be 
obtained as 

€ 

λ =
g
2π

T 2 tanh 2πh
λ

,  [1] 

resulting in a wavelength ≈ 1.56m. Assuming deep-water conditions, the phase speed of the waves, c, is given by λ/T 
= 1.56m/s and the group velocity, cg = c/2 = 0.78 m/s. The overall length of the wavetank was chosen as 15.6m, 
equating to a non-dimensional tank length of 10λ. 
 
The height of the waves down the flume is dependant upon the stroke amplitude of the wavemaker. Dean and 
Dalrymple (1991) present the stroke displacement to far-field wave heights for different types of wavemakers. For the 
verification procedure a wave height of H = 8cm was chosen, typical for a flume of these dimensions. It should be 
noted that a wave height of 8cm results in waves that operate in the stokes second-order regime. This does break some 
of the underlying assumptions of linear waves, upon which the stroke displacement to wave height ratio was based, 
but linear theory is robust and is still used in physical wavemakers with certain caveats applied. Regardless of the 
physics of the problem being solved, these results can be analysed for verification of descretisation errors. 
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2.   CFX 

ANSYS CFX. This is an implicit, coupled, finite volume based solver using the volume of fluid scheme for 
multiphase flow. The transient solver was used, as the problem being modelled is inherently transient. Other solver 
options implemented were homogeneous multiphase, with second-order transient solver and coupled volume-fraction. 

The flow was initialised with all velocity components set to zero. The pressure field in the water was set 
according to the hydrostatic pressure field and uniform in the air. The volume fractions of the water and air were 
implemented using a step function in CFX expression language. The volume fraction below the SWL was set to 1, 
water, and the volume fraction above the SWL set to 0, air. The total time for the transient run was set as 18s. This 
was chosen to give an appropriate amount of time to analyse the progression of the waves and in order to keep CPU 
time down. 

 
3.    Mesh Generation 

All meshes for CFX were generated using ICEM, a bespoke meshing programme for ANSYS software. Overall the 
mesh is ten wavelengths long in the x-direction and two water depths, h, in the y-direction and this mesh is extruded 
one cell thick as this is a requirement by the CFX solver. There is a region of refinement around the free-surface. An 
overview of the coarse mesh is shown in figure 1. 
The mesh consists of three distinct regions. The closest to the wavemaker is a region one wavelength long, where 
mesh motion is permitted. This is required in order to implement an oscillating solid boundary to replicate a physical 
wavemaker. Next is a region four wavelengths long, exactly the same as the first region only mesh motion is disabled. 
This is because the mesh motion is inherently dissipative and could lead to unwanted damping of the progressive 
waves. The third region is where the node spacing in the x-direction is successively stretched up to a point where the 
spacing, ∆x is larger than at least half a wavelength. This is to act as a numerical dissipation zone where any waves 
will be progressively damped out and thus avoid any unwanted wave reflections from the far boundary wall. In this 
region the growth ratio of the cells was ≤ 1.10 as excessively aggressive stretching could lead to numeric reflections. 
This resulted in a de-facto wave flume of five wavelengths long with a five wavelength damping zone. 
The region around the still water level (SWL) has uniform node spacing in ∆y. This region extends ±0.05m from the 
SWL to ensure that the expected wave height of 0.08m would be encompassed in this region. Both above and below 
this uniform region in the y-direction a geometric stretching of nodes was enforced. The region of air above the water 
is of little interest in this study and due to the exponential decay of the water partials such dense grid refinement was 
not necessary at the bottom of the flume. This allowed for a mesh with a smaller node count and allowing for quicker 
solving times. 

 

 

 

Figure 1. View of the entire wave flume domain for the coarse mesh. The grid stretching towards of the end of the domain is clearly visible as is the 
region of mesh refinement around the still water level (SWL) 

 

 

Figure 2. Close up of the motion enabled region of the mesh, showing the uniform ∆y spacing around the SWL and the spacing growth towards the top 
and bottom of the numerical wave flume. 
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4.    Boundary Conditions 

The boundary conditions imposed in this problem were; symmetrical boundary conditions implemented on both near 
and far vertical faces of the flume, (with reference to figure 1). No-slip wall conditions were imposed for both the far 
wall (x = 15.6m) and for the bottom of the wave flume. The wavemaker was represented using an oscillating wall 
boundary condition. The wall velocity was relative to the prescribed mesh motion. The mesh motion was achieved 
through a specified displacement in the x-direction, implemented via CFX expression language. The displacement 
was sinusoidal where the amplitude was set by Eq (1) for a piston wavemaker, 

€ 

H
x0

= 4 (cosh(kh))
2 −1

2kh + sinh(2kh)
  [2] 

and this amplitude was ramped up over 2s. The upper region of the mesh was set as an opening boundary, with 
entrainment option set for the mass and momentum option. The upper boundary next to the wavemaker was set as a 
non-slip wall however. This is the boundary next to the moving paddle and CFX suggests that all open boundaries 
should be orthogonal to a moving mesh. In the case of a bottom-hinged flap, this would not be true so this boundary 
was specified as a wall and not an opening. 
The total time for the simulations was selected as 18s. This was chosen to allow for the ramp up period of 2s, the 
waves to progress to the end of the five λ tank (cg = λ/2T thus this equals 10s.) and then for a wave crest to travel the 
length of the flume (at the wave phase speed), which takes 5s, and an arbitrary extra second. 

5.   Temporal discretisation 

A temporal discretisation study was performed to analyse the effect that time step selection had on the results. The 
objective of this study was to ensure the selection of an appropriate time step that yielded accurate results in the 
quickest time. 
If the time step chosen was too large, the CFX solver would perform too many inner loop calculations. This is where 
the solver iterates through the solution at one single time step in order to achieve convergence of the residuals. 
Throughout the calculations the inner loop limit was set to ten iterations, thus too high a time step and the solver 
would reach this limit and move onto the next time step without achieve residual convergence resulting in both 
suboptimal results due to lack of convergence and increased CPU solving times due to too many inner loop 
calculations. If the time step was too small, the inner loop iterations would invariably only perform one iteration and 
move to the next time step, but there would now be an excessive amount of time step calculations and the computation 
time would be unnecessarily large. 
The time step was chosen with the Courant Friedrichs Lewy (CFL) condition in mind. This number is used as a metric 
for explicit CFD solvers to analyse the stability of the calculations. While CFX is a fully implicit solver, and the CFL 
condition is a limiting factor for explicit schemes, choosing the time step based upon the CFL still has it’s merits. It 
was advised to keep the calculated CFL number as low as possible, but not lower than one (ANSYS, 2008). For a two 
dimensional case the courant number can be calculated as 

€ 

UxΔt
Δx

+
UyΔt
Δy

=ν ,  [3] 

where, υ is the CFL number, ux is the maximum velocity that information travels in the x-direction, uy is the 
maximum particle velocity in the y-direction ∆t is the time step and ∆x and ∆y are the grid spacing’s in x-direction 
and y-direction respectively. Generally, when choosing the values of ux and uy the maximum values of velocity are 
used. Care needs to be taken with deep-water waves as the phase velocity of the wave train is twice as fast as the 
group velocity and as a result ux needs to be set to the phase velocity of the waves. 
When investigating the temporal discretisation four different time steps were selected and analysed on the coarse and 
medium meshes. The relative CFL numbers used were 4.4, 2.2, 1.1 and 0.55. The corresponding time steps for these 
CFL numbers on the different meshes can be seen in Table 1.1. The results from a temporal convergence study can be 
analysed in a very similar manner to a spatial grid convergence study (Roache, 1998) and the corresponding 
convergence metrics can be seen in tables 1 and 2. 
Table 1 shows that good temporal convergence is achieved using either a CFL number of either 2.2 or 1.1. 
Qualitatively this convergence can be seen in figure 2. Table 2 uses a time step to maintain a CFL number of 2.2, 1.1 
and 0.55. It can be seen that there is oscillatory convergence with using a CFL of 0.55. This suggests that this time 
step is too small and quicker results could be obtained using a larger time step. This is in keeping with advice from 
ANSYS support.  
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4. Grid convergence index 

It is paramount that all CFD process to quantify the errors introduced through discretisation error. The methodology 
proprosed by Roache (1998) and subsequently adopted by NASA (NPARC, 2010) and the Journal of Fluids 
Engineering (Celik et al., 2008) will be followed herein. 
In order to extract the observed order of convergence, at least three different grids with constant refinement ratios are 
needed. For this verification study, three different scaled meshes were used; coarse, medium and fine. The coarse 
mesh has twice the node spacing in both ∆x and ∆y compared to the medium mesh, similarly, the medium mesh has 
twice the node spacing in both ∆x and ∆y compared to the fine mesh. 

The absolute values for medium mesh were chosen based upon a preliminary study that suggested that the results 
were sensitive to the spacing in ∆x. However, as the domain being modelled had an aspect ratio of ≈ 1 : 15 extra 
refinement to ∆x will become computationally expensive using a structured grid. A pragmatic choice of 128nodes/λ 
and 32nodes/H was decided upon for the medium mesh. This specification of node spacing in the y-direction is 
applicable in the region of refinement around the SWL, as mentioned, the node spacing is grown away form this 
uniform region. 

 

Table 3 lists the relative spacing for each of the three grids used. The reason that the total node count between the 
three meshes does not increase by exactly a factor of four is due to the dissipation region. In this region, as opposed to 
doubling the number of nodes in the x-direction for each successive grid, a constant growth ratio was sought. This 
means that the relative increase in node count going from the coarse to the medium and the medium to the fine meshes 
did not result in an exact doubling of nodes. In the region 5λ away from the wavemaker (i.e. non-stretched grid), the 
one-directional scaling is exactly a factor of two different and a factor of 4 in the two-dimensional node count. 

Table 4 shows that the observed order of convergence is what would be expected for a second-order scheme and 
satisfactory convergence is observed and the uncertainty is quantified as being between 1-4%. 

 
 

Figure 3. Free surface plot on the medium mesh showing good convergence with time step of 0.005s (CFL=2.2) and 0.0025 (CFL=1.1) 
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5. Validation 

A Validation process was conducted comparing the numerical output against an analytic solution using linear wave 
theory. The waves used in the verification section are not strictly linear. In order to allow for a direct comparison 
between theory and CFD, the CFD needed to model linear waves. In order to achieve this the wave amplitude to be 
modelled was 0.005m, wave period of 1.25s and a water depth of 1.5m. Based on the temporal and spatial studies, the 
fine mesh resolution and a time step that produced a CFL number of 2.2 were chosen. 

Figure 5 shows an overlay of the numerical result with the analytic solution for a piston wavemaker. Very good 
agreement is observed close in to the wavemaker (x=0). CFX even predicts the evanescent waves that arise from the 
mismatch between the wavemaker’s velocity profile and the orbital particle velocities of the water. Down wave from 
the wavemaker however a noticeable and progressive decrease in the wave height can be observed. This wave height 
attenuation was also present in all of the verification models.  

 

6. Discussion and conclusions. 

This paper has presented a formal grid convergence study for the generation of a progressive wave using ANSYS 
CFX. It primarily concentrated on the disctretisation errors introduced through the use of a finite time step and solving 
continuous equations on a discrete grid. Temporal convergence is achieved when the CFL number is between 1-2. The 
level of grid refinement is a matter of judgement. This paper will allow for users to quantify the uncertainty associated 
with using different relative grid refinements. 

One observation, noticed in both the second-order waves and the linear waves, was wave height attenuation occurring 
down the wave flume. This occurred both using the finest time steps and finest grid. Using Richardson extrapolation 
in Table 4 shows that with an infinitely fine mesh, the wave height would progressively decrease down the flume. 
This does occur to some degree in physical flumes as well, but not to the extent as was observed in this study. This is 
also not the first time that this has been reported in the literature (Bhinder 2009). But this is not necessarily an issue 
for coastal engineering modellers, a quick solution would be to increase the oscillation amplitude in order to achieve 
the desired wave height at the desired location. As the validation case shows, CFX can very accurately predict the 

 
 

Figure 4. Free surface plot on the three different meshes examining grid convergence. 
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fluid flow field and free surface close to a moving object. The wave height attenuation could be more of an issue for 
the wave energy sector who are looking at the interaction an radiation of waves from several different wave energy 
converters, their absorption characteristics being highly dependant on the wave radiation properties. 
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This paper investigates the effects that geometry and control have on the absorption characteristics of
wavemakers. It presents the hydrodynamic coefficients for piston and bottom hinged flap wavemakers and
also for two novel wavemaker profiles. Absorption efficiencies are presented for wavemakers using one, two
and three control coefficients for reactive control. This is then used to analyse the absorption efficiency of each
of the different wavemakers based upon the geometry and the control strategy used. It is shown that the
amount of absorption for a given paddle differs greatly depending on the choice of control coefficients used to
implement complex conjugate control. Increased absorption can be achieved over a broader bandwith of
frequencies when the geometry of the wavemaker is optimised for one specific frequency.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Engineers use wave tank facilities to assess the design, safety
and economic feasibility of ships and wave energy devices. Wave-
makers are a central component to such facilities and have been
studied extensively (Havelock, 1929; Biesel and Suquet, 1951; Dean
and Dalrymple, 1991; Hughes, 1993). A major problem encountered
with wave tanks is the contamination of the test domain by
wave reflections. Two options can be used to avoid these unwanted
waves, passive or active absorption. Passive wave absorbers (e.g.
absorbing beaches) damp out the incoming waves and ensure that
there are no reflections back into the domain. This form of absorp-
tion cannot deal with re-reflections caused by waves impinging
upon the test device and tank walls and take up large areas of space.
The other option is to use a dynamic system to actively absorb
incoming waves. In theory, it is possible to absorb regular waves
perfectly by tuning the active system over a range of frequencies
using active control. Several different techniques have been put
into practice to achieve optimal control of wavemaking devices, the
main difference is the choice of which quantity to measure and the
location of the measurement.

One method employed to absorb incoming waves uses the free
surface elevations in front of the wavemaker. Several surface
displacement measurements are taken and then the incoming wave
field is separated from the desired wave field. The wavemaker is then
moved in a manner that cancels out the incoming waves, (Milgram,
1970; Schäffer et al., 1994; Christensen and Frigaard, 1994).

Another approach adopted is the use of force as the hydrodynamic
feedback mechanism. One advantage of this approach is that force is
an integral quantity measured over the entire wavemaker front, thus
minimising any slight errors encountered with single point measure-
ments (Salter, 1981). Maisondieu and Clément (1993) published their
results on a force feedback–feedforward control loop for a piston
wave absorber. The problem considered was the absorption of water
waves by the horizontal motions of a vertical plane in response to the
hydrodynamic forces it experiences. Chatry et al. (1998) proposed a
self-adaptive control of a piston wave absorber. Naito (2006)
incorporates force feedback and optimal force control based upon a
two coefficient system for plunger type wavemakers. Spinneken and
Swan (2009b) discuss causal approaches for controlling active
wavemakers based upon infinite impulse response filters.

Manyof these force controlledabsorbingwavemakersuseestablished
theory for wave energy converters. Optimal control of wave energy
devices has been referred to as reactive control (Nebel, 1992), impedance
matching or complex conjugate control (Salter et al., 1976). This form of
control can be implemented using a number of control coefficients, but
the majority of absorbing wavemakers and wave energy devices
implement the impedance control using just one imaginary coefficient.
Price (2009) investigated the differences between the use of one, two and
three control coefficients. It was shown that, in polychromatic seas, the
capture width obtained is different for each of the control strategies and
this capture width is also influenced by the choice of tuning frequency.

The present paper investigates the differences that control
coefficient selection makes to the capture width of absorbing
wavemakers when implementing impedance matching. It contrasts
the results between using one, two or three control coefficients and
also explores the influence that wavemaker geometry has on the
absorption characteristics of the wavemaker.
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In the following, Section 2 derives the hydrodynamic coefficients
for four different shaped wavemakers, Section 3 explores the effect of
control strategy on absorption characteristics and the results and
conclusions are drawn up in Section 4.

2. Hydrodynamic coefficients of a wavemaker in a channel

Following the method used by Falnes (2002, sect 5.2.3), a 2D
wavemaker in a constant water depth, h, that can oscillate in surge is
considered. Cartesian coordinates, x,y,z, are used with z=0 at the still
water level and the positive z :axis directed upwards. This will result
in a velocity potential, ϕr

ϕ̂r = ∑
6

j=1
φjûj ð1Þ

where,φj is a complex coefficient of proportionality and the hat denotes
complex amplitude. For simplicity, the paddlemotion is limited to surge
(j=1). If the piston has a velocity with complex amplitude û1≠0, then
according to the inhomogeneous boundary condition

∂φ1

∂x = c zð Þ for x = 0 ð2Þ

where, c(z) is a function that defines the shapeprofile of thewavemaker.
The governing equation to this problem is the Laplace equation

∇2 φ̂ = 0 everywhere; ð3Þ

and the other relevant boundary conditions are the sea-bed boundary
condition

∂φ̂
∂z = 0 for z = −h ð4Þ

and the free surface boundary condition

−ω2φ̂ + g
∂φ̂
∂z = 0 for z = 0: ð5Þ

Giving the following solution for φ1 (Falnes, 2002),

φ1 = c0Z0 zð Þe−ik0x + ∑
∞

n=1
cnZn zð Þe−knx = ∑

∞

n=0
Xn xð ÞZn zð Þ ð6Þ

where, Zn is the nth eigenfunction and

Xn xð Þ = cne
knx: ð7Þ

Here, kn is the solution to the dispersion relationship for n≥0,
letting k0= ik,

ω2 = −gikn tanh −iknhð Þ ð8Þ

where g is the acceleration due to gravity. Application of the boundary
condition (2) at the paddle gives

c zð Þ = ∂φ1

∂x

� �
x=0

= ∑
∞

n=0
X′
n 0ð ÞZn zð Þ ð9Þ

where, Xn′(0) is used to represent dXn

dx
jx=0, as Xn is purely a function

of x. Multiplying by the complex conjugate, Zm* (z) and integrating
from z=−h to z=0, using the orthogonality condition yields

∫0
−h

c zð ÞZ�
m zð Þdz = ∑

∞

n=0
X′
n 0ð Þ∫0

−h
Z�
m zð ÞZn zð Þdz = X′

m 0ð Þh: ð10Þ

That is

X′
n 0ð Þ = 1

h
∫0
−h

c zð ÞZ�
n zð Þdz: ð11Þ

Combining Eqs. (11) and (7) yields

X′
0 0ð Þ = ik0c0; X′

n 0ð Þ = kncn; ð12Þ

thus giving the two coefficients

c0 =
−1
ik0h

∫0
−h

c zð ÞZ�
0dz; ð13Þ

cn =
−1
knh

∫0
−h

c zð ÞZ�
ndz: ð14Þ

The free surface elevation of the radiated wave, from Eq. (5), can
now be expressed as

η =
iω
−g

u ∑
∞

n−0
cnZn 0ð Þeknx: ð15Þ

Falnes (2002) gives the orthogonal set of eigenfunctions Zn(z) as

Z0 = N0ð Þ−1=2cosh k0 z + hð Þð Þ ð16Þ

Zn = Nnð Þ−1=2cos kn z + hð Þð Þ ð17Þ

where

N0 =
1
2

1 +
sinh 2k0hð Þ

2k0h

� �
ð18Þ

Nn =
1
2

1 +
sin 2knhð Þ

2knh

� �
for≥1: ð19Þ

The radiation impedance of a wavemaker, in a channel of width d, is
represented by Zj′j. The term Rj′j is the radiation resistance matrix. Xj′j is
the radiation reactance matrix. Care should be taken not to confuse the
orthogonal set of eigenfunctions Zn(z) with the impedance Zj′j.

Zj′ j = Rj′j + iXj′ j

Z11 = iωρd∫0
−h ψ1

∂φ�
1

∂x dz
� �

x=0

ð20Þ

As the paddle motion is limited to one degree of motion, the
subscripts relating to surge will be dropped hereafter. Thus the
impedance for a wavemaker in surge is

Z ωð Þ = iωρd∫0
−h c0Z0 zð Þ + ∑

∞

n=1
cnZn zð Þ

� �
c� zð Þdz

= ωk0ρhd jc0 j2 + iωρhd∑
∞

n=1
kn jcn j2:

ð21Þ

The radiation resistance, R(ω), is the real part of Eq. (21)

R ωð Þ = Re Z ωð Þf g = ωk0ρhd jc0 j2 ð22Þ

and the added mass, m(ω), is a product of the imaginary part of Eq.
(21),

m ωð Þ = 1
ω
Im Zf g = ρhd ∑

∞

n=1
kn jcn j2: ð23Þ
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2.1. Added mass and damping coefficients for different paddle geometries

The added mass and damping coefficients of a wavemaker are
dependent on its shape profile, c(z). Changes in the wavemaker's shape
profile will result in very different hydrodynamic characteristics. This
section presents the analytic expressions for added mass and damping
for four different wavemaker shapes; a piston, a bottom hinged flap, a
hyperbolic cosine shaped paddle, and a cosine shaped paddle (Fig. 1).
The piston and bottom hinged flap paddles are similar to those found in
many hydrodynamic laboratories around the world. The other two
wavemakers have been discussed in theory by Naito (2006) and Falnes
(2002). They proposed that, if the paddle profile is chosen, such that it
matches the wave field velocity profile of the waves, the evanescent
contributions inEq. (15)will be zero. The situationwhere awavepaddle
does not generate any progressive waves and only a standing wave
persists is also discussed. This is achieved by choosing a shape profile
that results in no real part to Eq. (15).

2.1.1. Piston wavemaker
For a piston, c zð Þ = S0

2
(where, S0 is the normalised stroke length),

the added mass and damping are given as

m ωð Þ = 4 ∑
∞

n=1

ρ 1− cos knhð Þð Þ2
� �

k2n 2knh + sin 2knhð Þð Þ ð24Þ

and

R ωð Þ = 4
ωρ cosh k0hð Þð Þ2−1
� �

k20 2k0h + sinh 2k0hð Þð Þ : ð25Þ

2.1.2. Bottom hinged flap
The hydrodynamic coefficients for a bottom hinged flap, c(z)=1+

z /h, are derived in Appendix A. The addedmass for such a wavemaker
is

m ωð Þ = 4ρ ∑
∞

n=1

−1 + cos knhð Þ + sin knhð Þknhð Þ2
k4nh

2 2knh + sin 2knhð Þð Þ : ð26Þ

and the damping is represented as

R ωð Þ = 4ωρ
1 + sinh k0hð Þk0h− cosh k0hð Þð Þ2

k40h
2 2k0h + sinh 2k0hð Þð Þ : ð27Þ

2.1.3. No evanescent waves
For there to be no evanescent waves, there should be no added

mass. This can be achieved if the paddle profile, c(z), matches that of
the wave velocity profile

c zð Þ = cosh k0s z + hð Þð Þ
cosh k0shð Þ : ð28Þ

Here, k0s is a fixed coefficient wavenumber at a frequency of ωs

that satisfies the real part to Eq. (8); k0s=k0(ωs). Using this
expression results in cn=0 for n≥1 ensuring only real solutions
and hence no evanescent contributions to the free surface (Eq. (15)).

The expressions for addedmass and damping of a wavemakerwith
no evanescent waves are

m ωð Þ = ∑
∞

n=1
ρe−c

×ððk0sec−k0se
b+ c−k0se

b + k0s
2knh−i sinh cð Þð Þ eb + 1

� 	2 −ikn + ikne
b + c−iebkn + ikne

cÞ2
k20s + k2n
� 	2 Þ

ð29Þ

and

R ωð Þ = ωρ

×ððk0e−i b+ iað Þ−k0 + eak0−k0e
−ib

4 a + sinh að Þð Þ cos b=2ð Þð Þ2
−e−ibk0s + k0s + eak0s−k0se

−i b+iað ÞÞ2
k20s−k20
� 	2 Þei b+iað Þ

ð30Þ

where, a=2k0h, b=2ik0sh and c=2iknh.
It should be noted that the wave number, kn(ω), in Eq. (29) is

frequency dependent and the wavemaker has no added mass at only
one chosen frequency, ωs. This type of wavemaker will be referred to
as a hyperbolic cosine, cosh(ωs), shaped wavemaker where, ωs

designates the frequency at which the added mass tends to zero.
Here, values of ωs=π,2π and 3πwill be considered, resulting in three
different wavemaker geometries. The addedmass for thewavemakers
can be seen in Fig. 2a and c, and it is clear that the added mass, m(ω),
tends to be zero at the chosen design frequency, ωs. All graphs
presented within this paper are evaluated for a water depth of
h=0.75[m] and a width of d=0.5[m].

2.1.4. No progressive waves
The other special case is when a paddle can move in such a way

that no progressive wave is radiated, only a standing evanescent wave
persists. This would be very difficult to achieve in a physical
wavemaker, but could more easily be achieved in a numerical code,
or as discussed by Naito (2006), using segmented wavemakers. For
there to be no progressive wave, the wavemaker needs to move in a
manner that results in the real part of Eq. (6) being zero. This is
achieved when the profile is

c zð Þ = cos k3s z + hð Þð Þ
cos k3shð Þ : ð31Þ

This form of wavemaker will be referred to as a cosine wavemaker.
Here, k3s is the third solution from the infinite sequence of imaginary
solutions to the dispersion relationship (Eq. (8)) at a fixed frequency
of ωs, k3s=k3(ωs). For this paper, the third mode (n=3) is chosen
arbitrarily and any value of n≥1would be equally valid. The larger the
value of n, the more oscillations in the wavemaker's surface through
the water column. The resultant shape using n=3 can be seen in
Fig. 1. The operation of this kind of wavemaker would result in the top
and bottom of the paddle oscillating out of phase with each other. The
choice of such a wavemaker profile results in the real part of Eq. (15)
becoming zero leaving only a standing wave.

Fig. 1. The four wavemaker shape profiles. The shape profile for the hyperbolic cosine
wavemaker is chosen at a wavenumber of k0s, the profile for the cosine wavemaker is
plotted for k3s, both at a fixed frequency of ωs=2π.

137A.E. Maguire, D.M. Ingram / Coastal Engineering 58 (2011) 135–142



Author's personal copy

The corresponding expressions for added mass and damping for
such a wavemaker are

m ωð Þ = 4ρ ∑
∞

n=1

−k3s sin k3shð Þ cos knhð Þ + kn cos k3shð Þ sin knhð Þð Þ2
2knh + sin 2knhð Þð Þ cos k3shð Þð Þ2 −k23s + k2n

� 	2
ð32Þ

and

R ωð Þ = ωρ

×ðð−k0e
a + b + k0e

b−k0e
a + k0−ik3s

4 a + sinh að Þð Þ cosh b
2

� �� �2 + ik3se
b−ik3se

a + ik3se
a+bÞ2e−a−b

k20 + k23s
� 	2 Þ

ð33Þ

where, a=2k0h and b=2ik3sh.
Obviously, a wavemaker operating in a manner that does not

create any progressive waves would have little practical value. The
hydrodynamic coefficients have been derived out of academic
curiosity and to show that it is possible to have a paddle that will
have zero damping and no progressive waves.

Fig. 2b and d show that such a wavemaker has zero damping at the
design frequency of ωs, but only at this frequency, at all other
frequencies the damping is non-zero.

3. Absorption efficiency

This section applies control strategies for a wave energy converter,
discussed by Price (2009), to absorbing wavemakers. The wavemaker
shapes discussed in Sections 2.1.1, 2.1.2 and 2.1.3 are compared using
absorption efficiency, similar to that used by Naito (2006) and
Spinneken and Swan (2009b). Herein, the absorption efficiency is the
ratio of absorbed power to maximum absorbed power and is plotted
over discretised monochromatic waves.

3.1. Control strategies

According to Falnes (2002) the intrinsic impedance, Zi, can be
represented as

Zi ωð Þ = R ωð Þ + i ω M + m ωð Þ½ �− c
ω

� �
ð34Þ

where,M is themass of the paddle, c is the spring stiffness,m(ω) and R
(ω) are added mass and damping respectively.

The optimum control force occurs when the control impedance, Zu,
equals the complex conjugate of the intrinsic impedance,

Zu ωð Þ = Z�
i ωð Þ = Zu;OPT ωð Þ: ð35Þ

Fig. 2. Hydrodynamic coefficients for the four different shaped wavemakers; Piston, Bottom hinged flap, cosh(ωs), cos(ωs). Fig. 2a and b are for paddles withωs=π, and Fig. 2c and d
with ωs=3π.
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Thus,

Zu;OPT ωð Þ = R ωð Þ−i ω M + m ωð Þ½ �− c
ω

� �
ð36Þ

and under a fixed coefficient system tuned to fixed frequency of
ω=ωp,

Zu;OPT ωp

� �
= R ωp

� �
−i ωp M + m ωp

� �� �
− c

ωp

" # !

= Rp−i ωp M + mp

� �
− c

ωp

" # ! ð37Þ

where, Rp and mp denote fixed coefficients at a frequency of ωp.

3.2. Spring-damping

There are a number of options available to implement this form of
control; mass-spring-damper, spring-damping, mass-damping and
pure damping. Each of these choices will lead to different absorption
characteristics as shown by Price (2009). The following will present
the derivation of absorption efficiency for a spring-damping control
scheme with fixed control coefficients of ru and cu.

The control force in the time domain is represented as

fu tð Þ = ruu tð Þ + cux tð Þ ð38Þ

and thus the impedance in the frequency domain can be obtained as

Zu ωð Þ = ru +
cu
iω

: ð39Þ

Optimising Eq. (39) at a single frequency, ωp, results in

Zu ωp

� �
= ru−

icu
ωp

: ð40Þ

Comparing Eqs. (37) and (40) gives the following control settings,
which agree with those presented by Naito (2006)

ru = Rp ð41Þ

cu = ω2
p M + mp

� �
−c

� �
: ð42Þ

Substituting into Eq. (39), gives the tuned control impedance atωp,
for a spring-damping system, over the full range of frequencies

Zu ωð Þ = Rp−
i
ω

ω2
p M + mp

� �
−c

h i
: ð43Þ

The maximum absorbed power, shown by Falnes (2002), can be
represented as

Pu =
1
2
Re Zu ωð Þ½ � j F̂e;j j2

jZi ωð Þ + Zu ωð Þ j2

=
Ru ωð Þ j F̂e;j j2 = 2

Ri ωð Þ + Ru ωð Þ½ �2 + Xi ωð Þ + Xu ωð Þ½ �2

ð44Þ

where, Fe represents the excitation force.
Setting the control impedance, Zu(ω) to the complex conjugate of

the intrinsic impedance Zi
*(ω), namely setting the variables Ru(ω) and

Xu(ω) to their optimum values of Ri(ω) and −Xi(ω) gives an
expression for the maximum power

Pu;max =
jF̂e;j j2
8Ri

: ð45Þ

Combining Eqs. (44) and (45),which agrees with Spinneken and
Swan (2009a), gives

Pu
Pu;max

= 4
Ru ωð ÞRi ωð Þ

Ri ωð Þ + Ru ωð Þð Þ2 + Xi ωð Þ + Xu ωð Þð Þ2 : ð46Þ

Using radiation resistance and reactance expressions from Eqs.
(34) and (43) and substituting into the power ratio Eq. (46), yields a
power absorption ratio for a spring-damper controlled system,

Pu
Pu;max

=
4RpR ωð Þ

Rp + R ωð Þ
� �2

+ ω M + m ωð Þð Þ−ω2
p

ω
M + mp

� �� �2 : ð47Þ

Integrating Eq. (47) over the range of frequencies typical to a 1/
100th scale wave tank (0.5 and 1.75 [Hz]) and normalising gives,

ξ =
5
2π

∫
7π
2

π

Pu
Pu;max

dω ð48Þ

where, ξ is a measure of the efficiency of the wavemaker in absorbing
discretised monochromatic waves of different frequencies to the
tuned frequency,ωp. Table 1 shows values of ξ for a mass-less, spring-
damper controlled system for the various shaped wavemakers.

Construction of a mass-less paddle is physically impossible, but
this could be implemented in a numerical code. This could provide an
absorbing boundary condition to deal with wave reflections in a
numerical wave tank. As can be seen from Table 1 very high levels of
absorption, over the chosen integral range, could be achieved in
conjunction with a cosh(3π) shaped wavemaker.

If the paddle has a finite mass, M, the absorption efficiency will
decrease due to the second term in the denominator of Eq. (47).
Table 2 shows ξ for a paddle with amass of 1 kg. It can be seen that the
introduction of mass decreases the absorption characteristics of the
wavemaker.

3.3. Mass-damping

This section presents the absorption efficiency of a wavemaker
using a mass-damping control system. The resulting absorption
efficiency can be obtained as

Pu
Pu;max

=
4RpR ωð Þ

Rp + R ωð Þ
� �2

+ ω m ωð Þ−mp

� �
− c

ω
1−ω2

ω2
p

� �� �2 : ð49Þ

Implementing complex conjugate control at one tuned frequency,
ωp, will result in optimal control for all wavemakers at that specific

Table 1
Absorption efficiency, ξ, for a mass-less paddle controlled using spring-damper
coefficients.

Tuning frequency ωp

π 2π 3π

Piston 0.628 0.652 0.312
Flap 0.876 0.904 0.775
cosh(π) 0.699 0.735 0.430
cosh(2π) 0.967 0.951 0.899
cosh(3π) 0.990 0.991 0.986
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frequency, ω=ωp. It is important to note, that at this frequency, the
absorption characteristics will be identical to that of a spring-damper
system, but away from this frequency the absorption characteristics
will differ to a system using spring-damping control coefficients. Thus
resulting in different values of ξ over the chosen definite integral. This
can be clearly seen in Table 3. The spring coefficient, which provides a
restoring force against the hydrostatic force of the water, was chosen
as c=20 N/m, based on the flap type wavemakers used at the
University of Edinburgh.

3.4. Mass-spring-damper

For a mass-spring-damper controlled system, the ratio of absorbed
power to maximum power is obtained as

Pu
Pu;max

=
4RpR ωð Þ

Rp + R ωð Þ
� �2

+ ω m ωð Þ−mp

� �� �2 : ð50Þ

This is a case when both a mass term and a spring term are used to
achieve complex conjugate control. Again, at the chosen control
frequency, ωp the absorption characteristics will be the same as the
other control strategies using reactive control (i.e. full absorption) but
differ greatly away from ωp. The main difference using this kind of
control scheme is that all wavemakers exhibit better levels of
absorption across a broader bandwidth, than using any of the other
control strategies. The best absorption, from Eq. (48), is obtained
using a cosh(3π) paddle, tuned toωp=3π. This results in 98.5% power
absorption of incoming waves between frequencies of π to 3.5π rad/s
(Table 4).

3.5. Damping

A purely real control system, using only a damping coefficient
gives an absorption ratio of

Pu
Pu;max

=

4R ωð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
p + ωp M + mp

� �
− c

ωp

� �s

R ωð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
p + ωp M + mp

� �
− c

ωp

� �s !2

+ ω M + m ωð Þð Þ− c
ω

� �2 :

ð51Þ

This is the easiest form of control to implement physically and
subsequently, the most widely used control strategy for power take

off in wave energy converters. Table 5 shows how using a control
strategy based upon damping alone affects the power absorption. An
interesting result here is that for all wavemaker shapes, absorption
efficiency is relatively insensitive to changes in tuning frequency. This
suggests that the choice of control frequency, ωp, is not a major
contributor to absorption efficiency for these wavemakers between
the chosen integral limits. The bottom hinged flap performs
favourably compared to the three hyperbolic cosine shaped paddles,
this could be due to there being a local minimum in the intrinsic
reactance (added mass) of this paddle at a frequency of 1.7π[rad/s]
(Fig. 2a) resulting in the real part of the power absorption Eq. (46)
dominating over the imaginary part.

3.6. Effect of control

In wave energy research, it has been long known that optimum
absorption of incoming monochromatic waves can be achieved if the
power take off (PTO) coefficients of the wave energy absorber are
chosen such to achieve impedance matching. Mei (1976) showed that
this could be implemented using two control coefficients; one
proportional to acceleration and the other proportional to velocity.
Evans (1981) arrived at the same results using a velocity-proportional
damping force and a displacement-proportional spring force. Using
either a mass-damping or a spring-damping approach will yield the
same optimum absorption of incoming waves at that one specific
tuned frequency, ωp. Price (2009) showed that, for a point absorber
acting in heave, both of these approaches differ when absorbing
incoming monochromatic waves of a frequency ω≠ωp. Fig. 3 shows
that this is true for absorbing devices acting in surge also.

Fig. 3 shows the absorption levels of four different wavemakers in
discretised monochromatic waves using different control strategies,
each tuned to ωp=3π. It is clear that the choice of control affects the
absorption levels across the bandwith of frequencies. The difference
between the various control strategies is most evident when
considering just one wavemaker shape. For example, at a frequency
of ω=3π in Fig. 3c the mass-damper, spring-damper and mass-
spring-damper control strategies all achieve the same value of Pu /
Pmax=1. Away from ω=3π, the absorption levels of waves at
frequencies different to that of the tuned frequency, ω≠ωp, differ
greatly.

There is a notable difference in absorption levels between the
mass-damper and the spring-dampermethods of control in Fig. 3. This
can be seen quantitatively comparing ξ in Tables 2 and 3, at a tuning
frequency of ωp=3π. Control implemented using mass-damping

Table 2
Absorption efficiency, ξ, for a paddle controlled using spring-damper coefficients.

Tuning frequency ωp

π 2π 3π

Piston 0.591 0.603 0.266
Flap 0.826 0.859 0.647
cosh(π) 0.662 0.690 0.372
cosh(2π) 0.875 0.904 0.736
cosh(3π) 0.709 0.852 0.680

Table 3
Absorption efficiency, ξ, for a paddle controlled using mass-damper coefficients.

Tuning frequency ωp

π 2π 3π

Piston 0.585 0.689 0.609
Flap 0.815 0.879 0.856
cosh(π) 0.646 0.751 0.700
cosh(2π) 0.830 0.932 0.921
cosh(3π) 0.545 0.971 0.971

Table 4
Absorption efficiency, ξ, for a paddle controlled using mass-spring-damper coefficients.

Tuning frequency ωp

π 2π 3π

Piston 0.602 0.695 0.617
Flap 0.872 0.892 0.866
cosh(π) 0.677 0.761 0.712
cosh(2π) 0.941 0.951 0.936
cosh(3π) 0.883 0.982 0.985

Table 5
Absorption efficiency, ξ, for a paddle controlled using just a damping coefficient.

Tuning frequency ωp

π 2π 3π

Piston 0.593 0.588 0.577
Flap 0.828 0.843 0.842
cosh(π) 0.665 0.664 0.667
cosh(2π) 0.881 0.885 0.884
cosh(3π) 0.770 0.808 0.795
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coefficients out performs that of spring-damping for every wave-
maker shape. Interestingly, upon changing tuning frequency to
ωp=π, the situation is reversed and control using spring-damping
coefficients display better absorption characteristics than mass-
damping.

When only a damping coefficient is used, complex conjugate
control is not possible and optimal absorption, Pu /Pmax=1, at ωp is
unachievable. When only real control is implemented for a piston
wavemaker (Fig. 3a) optimal control is never achieved, but high levels
of absorption are achieved at the lower bandwidth of frequencies.
These lower frequencies will have longer wavelengths and once
displacement limits are taken into consideration, these high levels of
absorption would disappear.

The highest levels of absorption were obtained for a cosh(3π)
paddle with a mass-spring-damper control strategy tuned to ωp=3π.
The construction of a cosh(3π) wavemaker would be difficult but this
shape could be used in a numerical wave tank as an absorbing
boundary condition instead of a computationally expensive damping
region in the numerical domain.

In fact, the role of wavemaker geometry has an important
influence on the absorption characteristics. This can be seen
contrasting the graphs for the four different shaped wavemakers in
Fig. 3. It can be seen that regardless of control strategy implemented, a
cosh(3π) (Fig. 3d) wavemaker displays better absorption character-
istics at frequencies of ω≠ωp, thus yielding much broader graphs.

4. Conclusions

This paper has shown that the absorption of incoming waves is
sensitive to the shape of the absorbing wavemaker, the control
strategy used to implement the absorption and also the choice of
tuning frequency in the control strategy.

Three different shaped wavemakers were considered; a piston, a
bottom hinged flap and a hyperbolic cosine paddle. The analytic
solutions for the added mass and damping for each wavemaker were
presented and it was shown that the added mass for the hyperbolic
cosine paddle tended to be zero for a specific chosen frequency. The
hydrodynamic coefficients were then used in the control strategies to
absorb incoming waves.

The different control strategies considered were mass-spring-
damping, spring-damping, mass-damping and damping. It was shown
that the best absorption, of frequencies between π rad/s and 3.5π rad/
s, was achieved with a hyperbolic cosine, cosh(ωs), wavemaker with
control coefficients tuned to a frequency of ωp=3π using a mass-
spring-damper control system.

The authors are not suggesting building a cosh(ωs) shaped
wavemaker as it would prove difficult and in engineering terms
result in only marginally better wave absorption compared to a
bottom hinged flap over the typical frequency range of a wave tank.
This shaped absorbing wavemaker could be used as a numerical
boundary condition to deal with unwanted wave reflections in

Fig. 3. Graphs showing the ratio of absorbed power to the maximum power theoretically achieveable, Pu
Pmax

, for four paddle geometries, each using four different control
configurations; Damping, Spring-damping, Mass-damping, Mass-spring-damping.
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numerical wave tanks, offering an alternative to other methods that
can be computationally intensive.

For wave absorbers acting in surge, it has been shown that there
are differences between using mass-damping, spring-daming and
mass-spring-damping coefficients to implement complex conjugate
control. All achieve optimal absorption of Pu /Pmax=1, at ωp but
absorption levels differ at frequencies other than the tuned frequency.
This highlights the importance in choosing what control strategy to
choose and include in a wave absorbing device. All of the reactive
control options are sensitive to the choice of tuning frequency ωp

adding another variable for consideration. This could have relevance
to any surging wave energy converter that makes use of reactive
control.

Furthermore, if the absorption of incoming waves is implemented
using real control, there is little discernible difference in the
absorption efficiency, ξ, upon changing the tuning frequency, ωp, for
all wavemaker shapes. A control strategy using just real control
coefficients is insensitive to the tuning frequency. Better returns on
absorption could be gained if design efforts concentrated on the shape
optimisation as opposed to power take off optimisation.

There are limitations to this study. Displacement limits have not
been considered and the amount of absorption reported in Fig. 3
would be an over estimation at the lower range of frequencies. The
response times of the paddles was also neglected, this would have
resulted in an over estimation of absorption at higher frequencies. The
definite integrals chosen for absorption efficiency, ξ, were based upon
frequency limits in the 1/100th scale tank at Edinburgh, so the
concerns over displacement limits and motion response should be
diminished. Future work will involve implementation of these
wavemakers and the control strategies in a computational fluid
dynamics code to investigate the performance of such novel paddles
with the different control choices.

Acknowledgements

The authors wish to acknowledge funding for this project from the
UK Engineering and Physical Sciences Research Council (EPSRC) as
part of the Doctoral Training Programme of Phase 2 of SuperGen
MARINE (EP/E040136/1).

Prof. Ingram acknowledges the support from the Scottish Funding
Council of his position within the Joint Research Institute in Energy
with the Heriot-Watt University which is a part of the Edinburgh
Research Partnership in Engineering and Mathematics (ERPem).

Comments from Dr. David Forehand are greatly appreciated.

Appendix A. Derivation of added mass and damping of a bottom
hinged paddle

Following Falnes' theory outlined in Section 2, the hydrodynamic
coefficients for a bottom hinged flap (c(z)=1+z /h) can be derived.
Using Eq. (13) and inserting orthogonality condition (16) yields

c0 = − 1
ik0h

N−1 = 2
0 ∫0

−h 1 + z = hð Þ cosh k0 z + hð Þð Þdz

= − 1
ik0h

N−1 = 2
0

1 + k0h sinh k0hð Þ−cosh k0hð Þ
k20h

= i 1 + k0h sinh k0hð Þ− cosh k0hð Þð Þk−3
0 h−2

1
2

+
1
4
sinh 2k0hð Þ

k0h

� �−1=2
:

ðA:1Þ

Thus, from Eq. (22) the damping for a bottom hinged paddle is

R ωð Þ = 4
ωρ 1 + sinh k0hð Þk0h− cosh k0hð Þð Þ2

k40h
2 2k0h + sinh 2k0hð Þð Þ : ðA:2Þ

Similarly, combining Eq. (17) with Eq. (14) gives

cn = − 1
knh

N−1 = 2
n ∫0

−h 1 + z= hð Þ cos kn z + hð Þð Þdz

=
1
knh

N−1 = 2
n

−1 + cos knhð Þ + knh sin knhð Þ
k2nh

= −1 + cos knhð Þ + knh sin knhð Þð Þk−3
n h−2

1
2

+
1
4
sin 2knhð Þ

knh

� �−1=2

ðA:3Þ

and the resulting added mass (Eq. (23)) is

m ωð Þ = 4ρ ∑
∞

n=1

−1 + cos knhð Þ + sin knhð Þknhð Þ2
k4nh

2 2knh + sin 2knhð Þð Þ : ðA:4Þ

Both of these coefficients for added mass and damping are in
agreement with Newman (2008) who did not present the full derivation.
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Schäffer, H., Stolborg, T., and Hyllested, P. Simultaneous generation and ac-

tive absorption of waves in flumes. In Proc., waves-physical and numerical

modelling., pages 90–99, University of British Columbia, Vancouver, 1994.

Silva, M. C., Vitola, M. d. A., Pinto, W. T. P., and Levi, C. A. Numerical

Simulation of monochromatic wave generated in laboratory: Validation of a

CFD code. In 23 Congresso Nacional de Transport Aquaviario Construcao

Naval Offshore, pages 1–12, Rio de Janeiro, 2010.

Smith, S. The scientist and engineer’s guide to digital signal processing. California

Technical Pub., 1997. ISBN 0966017633.



BIBLIOGRAPHY 191

Spinneken, J. and Swan, C. Second-order wave maker theory using force-feedback

control. Part I: A new theory for regular wave generation. Ocean Engineering,

36(8):539–548, 2009a. ISSN 00298018. doi: 10.1016/j.oceaneng.2009.01.019.

Spinneken, J. and Swan, C. Wave Generation and Absorption Using Force-

controlled Wave Machines. In Proceedings of the Nineteenth (2009) Inter-

national Offshore and Polar Engineering Conference, Osaka, Japan, 2009b.

Spinneken, J. and Swan, C. Theoretical Transfer Function of Force-controlled

Wave Machines. In Proceedings of the Twentieth International Offshore and

Polar Engineering Conference, volume 7, pages 409–417, Beijing, China, 2010.

Stern, N. Stern Review: The economics of climate change, volume 30. HM treasury

London, London, 2006.

Sulisz, W. and Hudspeth, R. Complete second-order solution for water waves

generated in wave flumes. Journal of Fluids and Structures, 7(2):253–268,

1993.

Tanizawa, K. and Naito, S. An application of fully nonlinear numerical wave

tank to the study of chaotic roll motions. International Journal of Offshore and

Polar Engineering, 9:90–95, 1999. ISSN 1053-5381.

Tanizawa, K. The state of the art on numerical wave tank. Proc. 4th Osaka

colloquium on seakeeping, 2000.

Thomas, J. Numerical Partial Differential Equations. Springer, New York, 2

edition, 1995. ISBN 0387979999.

Tolman, H. User manual and system documentation of WAVEWATCH III TM

version 3.14. Technical note, MMAB Contribution, 2009.

Ursell, F., Dean, R., and Yu, Y. Forced small-amplitude water waves: a compar-

ison of theory and experiment. Journal of Fluid Mechanics, 7(01):33–52, 1960.

ISSN 1469-7645.

Versteeg, H. and Malalasekera, W. An introduction to computational fluid dy-

namics: the finite volume method. Prentice Hall, 2007. ISBN 0131274988.

Wang, D.-l. and Zhao, Y.-h. Numerical Simulation of 2-D Nonlinear Wave. In

Proceedings of the Twentieth International Offshore and Polar Engineering



BIBLIOGRAPHY 192

Conference, volume 7, pages 586–589, Beijing, China, 2010. The International

Society of Offshore and Polar Engineers.

Wang, H.-W., Huang, C.-J., and Wu, J. Simulation of a 3D Numerical Vis-

cous Wave Tank. Journal of Engineering Mechanics, 133(7):761, 2007. ISSN

07339399. doi: 10.1061/(ASCE)0733-9399(2007)133:7(761).

Wehausen, J. Causality and the radiation condition. Journal of Engineering

Mathematics, 26(1):153–158, 1992.

Westhuis, J. The numerical simulation of nonlinear waves in a hydrodynamic

model test basin. Doctor’s thesis, University of Twente, 2001.

Westphalen, J., Greaves, D. M., Williams, C., Zang, J., and Taylor, P. Numerical

Simulation of Extreme Free Surface Waves. In ISOPE-2008: Eighteenth(2008)

International Offshore and Offshore and Polar Engineering Conference Pro-

ceedings, volume 8, pages 55–61. International Society of Offshore and Polar

Engineers, P. O. Box 189, Cupertino, CA, 95015-0189, USA
”

2008.

Westphalen, J., Greaves, D., Williams, C., Taylor, P., Causon, D., Mingham, C.,

Hu, Z. Z., Stansby, P., Rogers, B., and Omidvar, P. Extreme wave loading on

offshore wave energy devices using CFD: a Hierarchical Team Approach. In

Eighth European Wave and Tidal Energy Conference, Sweden, pages 500–508,

2009.

Woltering, S. and Karl-Friedrich, D. Mass transport and orbital velocities with

Lagrangeian frame of reference. In Proc. 24th International Conference on

Coastal Engineering, pages 2828–2842, Kobe, Japan, 1994.
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