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Abstract. The gust response of a Typical Section is investigated in term of both high-
fidelity Computational Fluid Dynamics (CFD) and low-fidelity analytical solutions of
the aerodynamic flow around it, in order to assess the suitability of the two approaches
in the preliminary design of a flexible wing. The aerodynamic forces acting over the
oscillating airfoil are calculated using the high-fidelity commercial tool FLOW-3D and
in term of the low-fidelity Theodorsen and Wagner theories formulated in a state-space
form. A sinusoidal vertical gust acts as the aerodynamic perturbation to the static
equilibrium of the aeroelastic system, the static and dynamic responses of which are
provided for different airfoil shapes, Typical Section elastic properties, gust intensities
and approaches. The effects of the physical differences between the two models are
identified in the case of both attached and separated flow during the airfoil’s
aeroelastic response. For attached flow the low-fidelity gust response agrees well with
the high-fidelity one, whereas for separated flow the low-fidelity model is unable to
predict the strong oscillations of the Typical Section in dynamic stall conditions and
suitable tuning of its response is needed.
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1 INTRODUCTION

In the context of aircraft preliminary design, reliable but computationally cheap tools
are highly desirable for analysing aircraft integrity, stability, controllability and
performance, due to the large number of design possibilities to be investigated. A
multidisciplinary approach where aeroelasticity plays a key role1 is nowadays required
for this purpose and it is therefore interesting to verify the suitability of simplified,
computationally cheap low-fidelity aeroelastic models relative to detailed,
computationally expensive high-fidelity ones.

The gust response of a Typical Section2 (see Figure 1) is considered, where the
aerodynamic forces acting over the oscillating airfoil are calculated using both the high-
fidelity CFD commercial tool FLOW-3D3 and the low-fidelity Theodorsen4 and
Wagner5 analytical theories. The section is an idealised representation of the cordwise
rigid section of a spanwise flexible wing: it is located at about 80% of the wing span
and consists of a rigid airfoil which can heave and pitch around the wing’s elastic axis
(EA), the elastic properties of which are represented by both a vertical spring hk (for

wing bending) and a torsional spring k (for wing torsion); its mass m and principal

second moment of inertia  are concentrated at its centre of gravity (CG).

Figure 1: Typical Section sketch.

A vertical wind gust acts as the aerodynamic perturbation to the static equilibrium of
the aeroelastic system and is introduced as a variation of the free-stream velocity either
globally, the whole airfoil experiencing it at the same time, or locally, the airfoil
penetrating it gradually. Both a light and a heavy gust have been applied in order to
compare the dynamic response of the Typical Section as calculated by the low- and
high-fidelity models for both attached flow with small airfoil displacements and
separated flow with moderately large airfoil displacements.

2 AEROELASTIC MODELS

With  thh  the vertical translation of the Typical Section and  t  its rotation

about the wing elastic axis, by assuming the airfoil displacements to extend to
moderately large values the following linear geometrical relationships hold

ehhAC  , dhhCG  , 







 e

c
hhCP

2
,   r , (1)
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where e and d are the distances of the aerodynamic centre and the centre of gravity
from the elastic axis, respectively, r is the aircraft’s rigid angle of attack in cruise

configuration and  t  is the rotation of the elastic axis with respect to it.

By assuming the wing’s structural damping to be neglegtable, the equations of
motion (i.e., pitch and plunge equilibrium) of the Typical Section about the wing elastic
axis are

  mgLhkdhm h   ,   dmgMkdhmd   
 , (2)

where  tLL  and  tMM  represent the total lift and aerodynamic moment resulting

at the wing’s elastic axis, which are given by


c

pdxL
0

,  


















c

dxxe
c

pM
0

4
, (3)

with      txpxptxpp ,~,  the pressure distribution along the airfoil cord c , its

leading edge being at 0x and trailing edge at cx  . Since the airfoil surface
represents the boundary condition for the aerodynamic flow around it, the pressure
distribution along the airfoil cord depends on its motion directly and a Fluid-Structure
Interaction (FSI) problem is hence formulated.

The above system of two Ordinary Differential Equations (ODEs) can be suitably
written in matrix form as

         gass FFKM   ,  












h

, (4)

where the structural mass matrix  sM , structural stiffness matrix  sK , aerodynamic

load vector  aF (including the gust load) and gravity load vector  gF are

  











 2mdmd

mdm
M s


,   










k

k
K hs

0

0
,

 









M

L
F a ,  










dmg

mg
F g ,

(5)

and both the displacements vector     t  and the aerodynamic load vector

    tFF aa  are generally composed of both a static contribution   ,  aF and a

dynamic contribution     t ~~  ,     tFF aa ~~
 as

     




















 ~

~
~ hh

,      


















M

L

M

L
FFF aaa

~

~
~

, (6)

In cruise condition, the static equilibrium equations for the purely static contribution
  of the airfoil displacements give
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      gas FFK  , (7)

where the components L and M of the static aerodynamic load vector  aF are


c

dxpL
0

,  


















c

dxxe
c

pM
0

4
, (8)

with  xpp  being the purely steady pressure distribution along the airfoil cord.

During the gust response, the dynamic equilibrium equations for the purely dynamic
contribution  ~ of the airfoil displacements are

       ass FKM
~~~   , (9)

with initial conditions     00~  and     00~  , where the components  tLL
~~

 and

 tMM
~~

 of the dynamic aerodynamic load vector  aF
~

are given by


c

dxpL
0

~~
,  



















c

dxxe
c

pM
0

4
~~

, (10)

with  txpp ,~~  being the purely unsteady pressure distribution along the airfoil cord.

2.1 High-Fidelity Model

FlowScience’s commercial tool FLOW-3D is a CFD based general purpose package
for multi-scale and multi-physics problems and serves as the high-fidelity model in the
present work. The pressure distribution along the airfoil cord is obtained by solving the
incompressible Unsteady Reynolds Averaged Navier-Stokes (URANS) equations6 on a
fix and structured finite-difference computational grid in two dimensions, using a finite-
volume numerical approximation7 and employing the Re-Normalised Group (RGN)
turbulence model8.

The flow region is subdivided into a structured mesh of fixed rectangular cells, to
each of which the local time-averaged values of all dependent variables are associated.
All variables are located at the center of the cells except for the components of the flow
velocity vector, which are located at the cells faces in a staggered grid arrangement.
Multi-block meshing3 is used to generate a variable spaced grid of nested blocks. All
geometric features of the problem are embedded within the mesh by defining the
Fractional Areas/Volumes (FAVOR) of the cells which are open to flow3. Control
volumes are defined surrounding each dependent variable location in order to construct
discrete numerical approximations of the governing equations. For each control volume,
surface fluxes, surface stresses and body forces can be computed in terms of
surrounding variable values; these quantities are then combined to form approximations
for the conservation laws expressed by the equations of motion. Most terms in the fluid
equations are evaluated explicitly using the current time-step values of the local
variables (although various implicit options exist as well); nevertheless, pressure and
velocity are coupled implicitly by using time-advanced pressure in the momentum
equations and time-advanced velocity in the mass/continuity equation. This semi-
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implicit formulation of the discrete equations allows for the efficient solution of low
speed and incompressible flow problems. The basic numerical method used in FLOW-
3D has a formal accuracy of first-order with respect to both time and space increments,
however second-order accurate options are also available and have been used here. In
any case, boundary conditions are at least first-order accurate in all circumstances; for
instance, the FAVOR method is equivalent to a first-order interpolation of the boundary
conditions in cells partially occupied by an obstacle. This particular approach becomes
particularly useful when solving transient problems as in the present work. A standard
RNG turbulence model has been adopted to describe the fluctuations of the unsteady
flow, where two coupled transport equations are written for the turbulent kinetic energy
k and dissipation ε. In addition, FLOW-3D employs the General Moving Obstacle
(GMO) model and Springs and Ropes (SR) physics to model the structural features of
the Typical Section. The former is able to solve the equations of motion for a rigid body
with up to six degrees of freedom, by employing a fixed-mesh approach which
guarantees a fast and robust physical model; the latter allows multi-body dynamics
representation by linking several solid objects together via springs (vertical, horizontal
or torsional) and ropes.

The static aerodynamic load in cruise conditions is calculated starting from the initial
rigid position of the airfoil; the static aeroelastic response of the Typical Section is then
obtained as the asymptotic value of its dynamic response to the aerodynamic load due to
free-stream wind.

Once the static aeroelastic response of the Typical Section is reached, a vertical gust
travelling towards the airfoil is introduced as a perturbation of the free-stream wind and
the dynamic aeroelastic response of the Typical Section to the additional aerodynamic
load due to the gust is then calculated.

Two detailed views of the multi-block mesh employed for the FSI simulations are
shown in Figure 2. The external mesh is about 30 c along-wind and 15 c cross-wind.

Figure 2: Typical multi-block CFD mesh: airfoil and leading edge close-up.

2.2 Low-Fidelity Model

Both Theodorsen’s and Wagner’s analytical theories serve as the low-fidelity model
in the present work and are based on a two-dimensional, laminar, incompressible,
inviscid and irrotational flow.

Linear thin airfoil theory9 based on the complex kinetic potential for small flow
perturbations is employed to estimate the aerodynamic load. The non-penetration
boundary condition of the fluid flow over the oscillating airfoil is imposed at the airfoil
Control Point (CP), located at the third quarter of its cord. The static lift L and
aerodynamic moment ACM of the airfoil are circulatory and applied at its Aerodynamic



Berci M., Mascetti S., Incognito A., Gaskell P.H., Toropov V.V.

6

Centre (AC), located at the first quarter of its cord, whereas both the dynamic lift L
~

and

aerodynamic moment M
~

include additional circulatory and non-circulatory
contributions applied at the control point and mid-cord, respectively. Both static drag D

and dynamic drag  tDD
~~

 include a leading edge suction contribution10 and are equal

to zero, such that the total inviscid drag    tDDtD
~

 is equal to zero too11.

In cruise conditions, the static aerodynamic load on the airfoil results2

 0/
2

2

1



  rL

SCVL ,   0/
2

2

1



  rLM

eCcCSVM
AC

, (11)

where  is the air density, V the air speed and S the airfoil surface, whereas
/L

C is

the lift-curve slope coefficient and
ACM

C the aerodynamic moment coefficient of the

airfoil, which can be obtained at its aerodynamic center by employing either the Prandtl-
Glauert theory or the complex conformal theory for thin airfoils. The static aeroelastic
equations of the Typical Section can then be written explicitly as

      ga
r FFK  , (12)

and their solution   calculated analytically; the aeroelastic stiffness matrix  K and

the rigid aerodynamic load vector  a
rF are defined in Appendix A.

During the gust response of the Typical Section, a vertical component tV


of the free-

stream velocity is generated by both the airfoil motion and the vertical gust;
nevertheless, by considering small perturbations of the potential flow about the

horizontal reference wind speed V


, the effective reference wind speed results

  VVVV teff


. Based on this assumption, Theodorsen derived the purely dynamic

aerodynamic load of the airfoil, which, by employing a suitable Pade’ approximation of
the complex Theodorsen’s function12 (which is defined in the reduced frequency
domain), can be written in state-space form as

G
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(13)

where  tLL GG ~~
 and  tMM GG ~~

 represent the additional aerodynamic load due to the

gust, whereas  tzz ~~  is an added aerodynamic state which evolves as
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with the static initial conditions   00~ z and   00~ z . The dynamic aeroelastic equations

of the Typical Section can then be written explicitly as

          GTTT FKCM
~~~~

 
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~
 , (15)

and their solution  ~ calculated analytically; the aeroelastic mass matrix  TM ,

damping matrix  TC , stiffness matrix  TK and the gust aerodynamic load vector  GF
~

are defined in Appendix A.
By adopting an indicial approach with Duhamel integral convolution, Wagner

derived an alternative formulation for the purely dynamic aerodynamic load of the
airfoil, which, by a employing a suitable exponential approximation13,14 of the Wagner’s
function (which represents the Fourier transform of the Theodorsen’s function and is
defined in the reduced time domain), can be written in state-space form as
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where  tww ~~  is an added aerodynamic state which evolves as
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with the static initial conditions   00~ w and   00~ w . The dynamic aeroelastic

equations of the Typical Section can then be written explicitly as
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 , (18)

and their solution  ~ calculated analytically; the aeroelastic mass matrix  WM ,

damping matrix  WC , stiffness matrix  WK are defined in Appendix A.
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The occurrence of a vertical gust  tVV GG  can be introduced as a variation of the

free-stream velocity either globally or locally. In the sense of a “global” approach, the
gust is experienced by the whole airfoil at the same time and can be modelled as an
instantaneous variation of the vertical component of the effective reference wind speed

(i.e., instantaneous angle of attack of the airfoil) by simply considering Geff Vhh 
 ~~

,

modifying the evolution of the added aerodynamic states and generating the additional
aerodynamic load

GLG
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(19)

In terms of a “local” approach, the airfoil gradually penetrates the gust travelling
towards it and, still by adopting an indicial approach with Duhamel integral
convolution, Kussner15 derived its additional aerodynamic load, which, by employing a
suitable exponential approximation13,14 of the Kussner’s function, can be written in
state-space form as
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(20)

where  tgg ~~  is a further added aerodynamic state which depends on the gust profile

only (i.e., it is uncoupled from the airfoil motion) and evolves as

GVg
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 , (21)

with the static initial conditions   00~ g and   00~ g .

3 RESULTS

The Typical Section of a small aircraft of 550mm wing span, 100mm wing cord and
50mm fuselage width is considered. The aircraft wing is rectangular, has no wash-out,
sweep and dihedral angle, its structural arrangement is uniformly made of balsa wood
(density  =150kg/m3, Young’s modulus E =1.3∙109Pa, shear modulus G =6.2∙108Pa)

and consists of a single straight spar with rectangular section and ribs. The airfoil shape
is given by the Karman-Trefftz conformal transformation16 as

 
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1
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(22)
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where yxz i and YXZ i are complex variables describing the airfoil shape (with

a trailing edge angle T =2deg) and the unitary circle in the yx  and YX  complex

planes, respectively. As shown in Table 1, two different values for the complex constant

KTc have been chosen in order to generate two different airfoil shapes “A1” and “A2”

with the same thickness distribution but different camber line. In particular, the
maximum thickness of the airfoils is located at about 30% of their cord, where the wing
spar is placed. Due to the small camber of the airfoils, their inertial properties are
considered to be identical with their centre of gravity located at about 40% of their cord:
for airfoils of width 30mm, their mass and principal second moment of inertia are
estimated as m =2∙10-4kg and  =10-7kg∙m2. The cord ĉ of the airfoils in the complex

plane yx  is defined as the maximum segment inscribable within the airfoils

themselves, therefore their entire shape is rescaled in order to give the desired real cord
c . The zero-lift direction being coincident with the horizontal axis of the yx  complex

plane, the zero-lift angle of attack 0 of the airfoils is calculated as the angle between

their cord and the x axis. The two Karman-Trefftz airfoils considered are shown in Fig.
3 and, by employing complex potential conformal theory16, their static aerodynamic
moment coefficient and lift-curve slope can be calculated as
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(23)

Figure 3: Karman-Trefftz airfoils.

Assuming the wing skin to play no structural role, the vertical and torsional springs
of the Typical Section represent the wing spar flexibility only and their constants are
calculated using the Principle of Virtual Work (PVW) and the Euler-Bernoulli beam
approximation17 as

3

3

l

EI
kh  ,

l

GJ
k  , (24)

where l =200mm is the spanwise location of the Typical Section, whereas I and J are
the second moment of area and the torsion constant of the wing spar section about its
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central horizontal axis, which are calculated employing the Saint-Venant torsion
formulation18 for a straight uniform bar of rectangular solid section as

12

3
ss wh
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b
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b
baJ , (25)

with sh =5mm the height and sw the width of the wing spar cross-section, â and b̂

being its larger and smaller dimension. The two values chosen for the wing spar width
are shown in Table 1 and lead to two couples of values “S1” and “S2” for the linear
springs constants.

KTc 0 /L
C

ACM
C

A1 -0.89-0.11i 3.4deg 6.67 -0.09
A2 -0.90-0.04i 1.1deg 6.65 -0.03

sw hk k

S1 0.0084m 42.5N/m 0.68Nm/rad
S2 0.0051m 26.0N/m 0.29Nm/rad

Table 1: Typical Section parameters: airfoils and springs.

A sinusoidal vertical gust of one-second duration is considered as a perturbation of
the aeroelastic system in cruise conditions

  tVG cos1
2

VG  ,  1,0t , (26)

where GV is the maximum gust intensity and the chosen “1+cos” gust profile

reproduces an initial sudden perturbation of the flow which then fades out slowly.
Before the high- and low-fidelity gust response of the Typical Section were

calculated, a low-fidelity aeroelastic stability analysis was carried out in order to define
the safe aeroelastic flight envelope of the aircraft, by following the procedure presented
in Appendix B and considering the aircraft to fly at sea level with a rigid angle of attack

r =2deg; the reference wind speed V =15m/s was then suitably chosen, along with the

gust intensity GV =1.5m/s for a light gust and GV =5m/s for a heavy gust. The “global”

approach for calculating the additional aerodynamic load due to the gust has been
employed alongside Theodorsen’s theory, whereas the “local” approach is employed
alongside Wagner’s theory.

By combining the two airfoil shapes “Ai” with the two couples of springs “Sj”
proposed in Table 1, four Typical Section configurations “Ai-Sj” are obtained as shown
in Table 2 and their static and dynamic aeroelastic response investigated.

S1 S2
A1 A1-S1 A1-S2
A2 A2-S1 A2-S2

Table 2: Typical Section configurations.

3.1 Static Response

Both low- and high-fidelity static aeroelastic responses of the Typical Section are
presented in Table 3, for all its configurations.
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A1-S1 A2-S1 A1-S2 A2-S2

LFh 5.8mm 3.4mm 8.9mm 5.5mm

HFh 4.3mm 2.8mm 6.7mm 4.5mm

LF -0.216deg -0.043deg -0.529deg -0.106deg

HF -0.176deg -0.037deg -0.404deg -0.088deg

Table 3: Typical Section static response.

The low-fidelity results agree quite well with the high-fidelity ones, especially when
the airfoil “A2” (which presents the lowest camber) is considered, since the springs
displacements are actually small and the steady flow attached: the boundary layer is
very thin and a steady potential-based theory is very efficient for estimating the airfoil’s
static aerodynamic load and predicts the static aeroelastic behavior of the Typical
Section reliably enough at very low computational cost. Figure 4 shows the velocity
vectors and streamlines of the aerodynamic flow around the two Karman-Trefftz airfoils
as calculated by employing complex potential conformal theory.

Figure 4: Velocity vectors and streamlines around the Karman-Trefftz airfoils.

3.2 Gust Response

In the case of a light gust, the aeroelastic dynamic response of the Typical Section is
shown in Figure 5 for the two extreme configurations “A2-S1” and “A1-S2”, which are
characterized by the lowest airfoil camber with the largest spar width and the highest
airfoil camber with the smallest spar width, respectively. Still, the low-fidelity results
agree well with the high-fidelity ones, especially when the spar width “S1” (which leads



Berci M., Mascetti S., Incognito A., Gaskell P.H., Toropov V.V.

12

to the highest springs stiffness) is considered, since the springs displacements are
actually small and the unsteady flow is attached: the boundary layer is thin (see Figure
6) and an unsteady potential-based theory is very efficient for estimating the purely
dynamic aerodynamic load of the airfoil and predicts the dynamic aeroelastic behavior
of the Typical Section reliably enough at very low computational cost.

Figure 5: Typical Section dynamic response to a light gust: vertical and torsional spring displacement.

Figure 6: Velocity magnitude contours for the Typical Section “A1-S2” dynamic response to a light gust.

In particular, agreement between the low- and high-fidelity results is generally better
for the torsional spring displacement than for vertical spring displacement. However,
during the initial transient of the gust response the opposite is true since the low-fidelity
displacement of the torsional spring presents quite a high initial peak which is followed
by very fast oscillations, especially in the case of the Theodorsen theory with the
“global” gust approach. In fact, the presence of the initial peak in the low-fidelity results
is due to the fact that the gust profile is initially described by a perfect step which is not

A2-S1

A1-S2
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maintained in the CFD simulations, the gust profile of which is initially described by a
very steep ramp instead. Moreover, the “global” gust approach employed along with
Theodorsen theory provides the aerodynamic flow with additional apparent inertia, due
to the variation in time of the vertical component of the free-stream velocity: this is not
realistic in fact, since in a real situation the profile of a vertical gust is “frozen” in space
(i.e., each point of the gust profile has a constant vertical speed) and the airfoil simply
passes through it. No separation of the boundary layer being observed (see Figure 6),
the small and very fast oscillations in the high-fidelity solutions represent the marginal
effects of turbulence on the dynamic gust response of the Typical Section.

In order to overcome the issue of considering two slightly different gust profiles
within the two models, the initial ramp of the gust profile provided by the high-fidelity
model has been suitably approximated via an arctangent function and then employed
within the low-fidelity model. Also, the contribution of the aerodynamic flow apparent
inertia to the gust load of the “global” approach has been removed and the new results
obtained are shown in Figure 7, focusing on the initial transient of the gust response.

Figure 7: Typical Section dynamic response to a light gust: actual transient.

The agreement between low- and high-fidelity results is also very good during the
initial transient of the gust response, especially for the torsional spring displacement. In
particular, the results provided by Wagner’s theory with the “local” gust approach are
very accurate, whereas those provided by Theodorsen’s theory with the “global” gust
approach are slightly less accurate (since the airfoil’s gradual penetration of the gust is
not accounted for in the “global” approach) but computationally slightly cheaper (since
there is no need for the additional differential equation for aerodynamic state describing
the gust evolution in time). It’s worth nothing that while Theodorsen’s and Wagner’s
theories are formally equivalent, slightly different results can still be obtained due to the

A2-S1

A1-S2
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accuracy of the particular approximations employed for both Theodorsen’s and
Wagner’s functions in the range of the reduced frequencies and Strouhal number of the
unsteady flow which characterises this study.

For the case of a heavy gust, the aeroelastic gust response of the Typical Section is
shown in Figure 8 for the two extreme configurations “A2-S1” and “A1-S2”, where the
gust profile associated with the high-fidelity model has been suitably approximated and
then employed within the low-fidelity model too.

Figure 8: Typical Section dynamic response to a heavy gust: vertical and torsional spring displacement.

The low-fidelity results does not agree well with the high-fidelity ones, since the
springs displacements are not small (especially that of the vertical spring) and the
unsteady flow is separated: a linear potential-based theory is not effective for estimating
the purely dynamic aerodynamic load of the airfoil and predict the nonlinear aeroelastic
behavior of the Typical Section reliably enough in dynamic stall conditions19.
Therefore, when a low-fidelity nonlinear stall model20 is not employed, the low-fidelity
response needs to be corrected according to the high-fidelity response, by employing a
suitable tuning technique21. Nevertheless, it is possible to see how the results of the
linear low-fidelity models agree well both at the very beginning and towards the end of
the gust response: in the former case, the airfoil has not fully penetrated the gust yet and
most of the flow around is still attached, whereas in latter case the vertical gust speed is
gradually vanishing and the flow around the airfoil becomes attached again.

Figure 9 shows the evolution of a dynamic stall cycle for the Typical Section in
terms of velocity field. It is possible to see the large periodic separation occurring at
both the leading and the trailing edge (where a large eddy is shed in the airfoil wake),
with detachment and reattachment of the aerodynamic flow around the airfoil; in

A2-S1

A1-S2
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particular, it can be seen how the dynamics of the flow is driven by its vorticity rather
than turbulence, due to the relatively low Reynolds number characterising this study.

Figure 9: Typical Section “A1-S2” dynamic response to a heavy gust: velocity field around the airfoil.

4 CONCLUSIONS

The gust response of a Typical Section has been investigated in term of both a high-
fidelity CFD solution and a low-fidelity analytical solution of the aerodynamic flow
around it. Different airfoil shapes, Typical Section elastic properties, gust intensities and
approaches (“local” and “global”) have been investigated and the effects of the physical
differences between the two modelling approaches have been identified in the case of
both attached and separated flow. For attached flow, the low-fidelity aeroelastic gust
response provided by Theodorsen’s and Wagner’s linear theories agrees well with the
high-fidelity one provided by FLOW-3D; therefore, it can be concluded that both static
and dynamic low-fidelity analytical aeroelastic models are suitable, fast and
computationally cheap tools for use in the preliminary design of a flexible wing. In
particular, the proposed state space form of the Wagner theory was found to be slightly
more accurate than the proposed state space form of the Theodorsen theory, for the
relatively high Strouhal number and reduced frequencies characterising this study, and

t1 t2

t3

t5

t4

t6
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the Kussner approach demonstrated to be the most accurate for estimating the gust load
in the low-fidelity model. For separated flow, the low-fidelity aeroelastic gust response
does not exhibit the strong oscillations of the Typical Section in dynamic stall
conditions, as correctly predicted by the high-fidelity model, and needs to be tuned by
employing an appropriate technique; therefore, it can be concluded that both static and
dynamic low-fidelity analytical aeroelastic solutions are not suitable for use in the
advanced design of a flexible wing because of the high complexity of the physics
involved in the very nonlinear fluid-structure interactions.

APPENDIX A: AEROELASTIC MATRICES AND AERODYNAMIC VECTOR
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APPENDIX B: AEROELASTIC STABILITY ANALYSIS

Consider a generic linear aeroelastic system

          FxKxCxM   . (B1)

The static aeroelastic divergence speed DV is defined as the minimum speed V that

makes the static response of the aeroelastic system singular and can be investigated
globally as the minimum aircraft speed for which22

   0det K ; (B2)

meaning that the elastic forces of the flexible structure are not able to balance the static
aerodynamic forces acting over it and eventually guarantee a unique static equilibrium
point anymore.

The dynamic aeroelastic divergence speed FV (flutter speed) can be defined as the

minimum speed V that leads the real part of at least one of the eigenvalues  of the

aeroelastic system being positive, hence making its dynamic response singular, and can
be investigated globally as the minimum aircraft speed for which23

       0det 2  KCM  ; (B3)

flutter being due to coupled self-sustained motion of at least two degrees of freedom of
the aeroelastic system, one of which becomes unstable and extracts energy from the
other/s (hence becoming more stable) involved in the coupling mechanism. A
polynomial characteristic equation is obtained from the condition above and an even
number of eigenvalues is calculated numerically for each aircraft speed within the target
flight envelope. These eigenvalues are generally complex numbers iii  i that are

aircraft speed dependent and can be either all real, or some real and some complex
conjugates, or all complex conjugates: the real part i relates directly to the damping of
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the system, whereas the imaginary part i relates directly to the frequencies if of the

system as ii f 2 . For V =0m/s the aeroelastic system is not aerodynamically damped

by definition; therefore, the real parts of its eigenvalues are zero and its structural
natural frequencies obtained24.
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