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5.1 Introduction

An important characteristic of many coastal structures is that they are
constructed of porous media, i.e. coarse granular material, rock or concrete
units in variable sizes. An effective treatment of the flow in porous media is
one of the main requirements in the numerical simulation of wave interaction
with a RMB.

A second specific feature which characterizes the problem is the presence
of a free surface. Different techniques for tracking and locating the free
surface in NS solvers have been developed, as discussed in Chapter 2.

In the following chapter, the numerical framework is presented in which
the present research has been carried out. The model equations and their
numerical implementation are discussed, providing a background for the
numerical study. In this discussion, the main features of the considered
wave-structure interaction are emphasized: porous media flow and free-
surface modeling.

5.2 Motivation

From a scientific point of view, it is obviously preferred to have full access to
the source code of the CFD model. There are a number of open source CFD
codes available, e.g. OpenFOAM®1 or TRUCHAS2. In general however,
these models are not specifically developed for solving the fluid flow in wave-
structure interaction, but encompass a wide variety of physical features such
as electromagnetism, phase change, solid mechanics or heat transfer. It was
not until very recently that an open source model specifically designed for
coastal engineering applications has been released, called IHFOAM (Higuera
et al., 2013). The model is based on OpenFOAM® and is still under

1www.openfoam.org
2telluride.lanl.gov
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development. At present stage, it does not include porous media flow.
Even when disposing of a generic open source model, developing and

validating a code requires a considerable amount of time and financial
resources. Considering the aforementioned, it was decided to employ a
readily available, state-of-the-art commercial CFD model. There are a
number of widely used commercial codes available, so the question rises
which one is most suitable to address the research goals formulated in
Chapter 1. The answer to that question is not straightforward, and probably
a number of arguments can be used in favor of one or another specific model.
After screening a number of available codes, the model flow-3d® was
selected, developed by Flow Science Inc.3. This choice is mainly based on
the following arguments:

• flow-3d makes use of the VOF technique, developed by dr. C.W. Hirt
and founder of Flow Science. The rigorous and efficient implementation
of the VOF method is considered to be one of the main strengths of
this particular model, providing an accurate and robust method for free-
surface tracking. In this respect, the numerical algorithm to evolve the
shape and location of the free surface whilst maintaining its character
as a discontinuity and the application of proper free-surface boundary
conditions are mentioned (Flow Science, Inc., 2012);

• the availability of customizable subroutines, providing some flexibility to
the user to implement or adjust features of the model;

• the capability to model moving objects, which will be of importance to
represent a piston wavemaker (cfr. infra);

• an efficient approach for grid generation and obstacle representation based
on a cut-cell method, greatly reducing the amount of work on the users’s
part.

flow-3d is a multi-physics solver with options for a broad wide range
of flow problems. The physical background of the model is presented
hereafter, together with a description of the numerical implementation. The
discussion is concentrated on the particular problem of wave interaction with
a permeable structure.

5.3 Model equations

The following section presents the physical background of the numerical
model. The basic equations are the fundamental equations for fluid

3www.flow3d.com
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dynamics, which reflect the conservation of mass and momentum. They are
presented here first in general form in a clear fluid region, i.e. in absence of
obstacles of any kind. Next, the extension of the conservation equations with
models for porous media flow and turbulence is presented. In addition to the
conservation equations, the treatment of a free surface or fluid interface, in
respectively single-fluid or two-fluid problems, forms one of the cornerstones
of the model and deserves particular attention. Finally, a brief discussion is
given on the initial and boundary conditions completing the specific problem
setup.

5.3.1 Conservation equations
Mass cannot be created nor destroyed. The rate of accumulation of mass
inside an infinitely small control volume has to be balanced by the net
outflow of mass through its boundaries:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (5.1)

where ρ is the fluid density and ui(i = x, y, z) the Cartesian components of
the velocity. Note the use of the Einstein summation convention. For an
incompressible fluid, eq. (5.1) reduces to

∂ui
∂xi

= 0 (5.2)

The conservation of momentum is based on Newton’s second law, stating
that the change in momentum in a control volume is due to the forces
that act on that volume. The gravity force (acceleration g) is assumed to
be the only acting body force. In differential form, the equation for an
incompressible fluid reads:

∂ui
∂t

+ uj
∂ui
∂xj

= gδij −
1

ρ

∂p

∂xi
+

1

ρ

∂τij
∂xj

(5.3)

where the terms on the left-hand-side of eq. (5.3) express the local and
convective acceleration, equalized by the gravity force gδij , pressure forces
(p) and viscous accelerations (τ). The momentum equations (5.3), often
referred to as the Navier-Stokes equations, describe the fluid motion with
full consideration of nonlinear effects.

Eq. (5.3) is generally employed assuming that the shear stress τij is
proportional to the velocity gradient. A fluid with such properties is called
Newtonian. When the fluid is incompressible, the shear stresses read:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.4)

with µ the dynamic viscosity.
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5.3.2 Porous media flow model
In flow-3d, the porous medium flow resistance is modeled by inclusion of a
drag term in the momentum equations, as discussed in section 2.3.2. Several
drag models are available in the code to represent saturated or unsaturated
porous media flow, including effects of capillary pressure. Coarse granular
material is used in most coastal engineering applications, in which case the
Forchheimer model is suitable (referred to as ‘Reynolds number dependent
drag’ in flow-3d). Using this model, a drag term Fdui is added to the right-
hand-side of eq. (5.3), obtained by combination of eq. (2.3) and eq. (2.30):

Fdui = −g(anui + bn2|ui|ui) (5.5)

where ui = usi are the velocity components solved in the momentum
equation (5.3), representing the seepage velocity in the porous medium. |ui|
is the norm of the (seepage) velocity vector and n the porosity. It is noticed
that the inertial drag term in unsteady flow is neglected in eq. (5.5). The
dimensional coefficients a and b were discussed in section 2.1.5. In flow-3d,
the following formulation is used:

a = αF
(1− n)2

n3
ν

gD2
, b = βF

(1− n)

n3
1

gD
(5.6)

where D is a characteristic grain size diameter (e.g. D50 or Dn,50) and αF
and βF dimensionless shape factors.

It is noticed that the effect of macroscopic turbulence (see section 2.3.2)
inside porous media is not considered in flow-3d. To the author’s
knowledge, no validation studies for coastal engineering applications have
been reported that clearly identify the contribution of this term in the
total flow loss inside porous media. It may be expected that macroscopic
gradients of seepage velocity are intrinsically small, due to the averaging
approach, and so will be the related turbulent flow losses. An exception
may be found near the interfaces between clear fluid and porous medium or
interfaces between porous media with different characteristics, where larger
velocity gradients arise.

It is noticed that the presence of a porous medium does not only affect
the equation for momentum conservation, but also the mass conservation
equation and kinematic free-surface boundary condition. The specific
numerical approach in flow-3d to satisfy these conditions will be treated
in section 5.4.

5.3.3 Turbulence modeling
The most accurate approach for turbulence modeling, referred to as Direct
Numerical Simulation (DNS), is to solve the Navier-Stokes equations with
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proper initial and boundary conditions, resolving the whole range of spatial
and temporal scales of the turbulence, from the smallest dissipative scales
up to the integral scale associated with the motions containing most of the
kinetic energy. The computational cost of DNS is extremely high, even at
low Reynolds numbers. Besides these constraints involving computational
time and cost, it is even not desirable to apply DNS in cases where porous
flow modeling is applied because of the volume-averaging approach.

When DNS is out of scope, turbulent effects are to be approximated in
the model. Mainly two options are available: Large-Eddy Simulation (LES)
and Reynolds-averaging of the Navier Stokes equations, which are both
available in flow-3d. With LES, the basic idea is to directly compute
all turbulent flow structures that can be resolved by the computational
grid and approximate only those features that are too small to be resolved,
using a subgrid-scale model. Since a considerable amount of kinetic energy
in the flow must be resolved, a high grid resolution is still needed. To
allow the large flow structures to break up into smaller ones, the flow has
to be simulated in three dimensions and time-accuracy has to be retained.
Moreover, an energy-conserving discretization of the momentum convection
is mostly needed in LES, in order not to dampen out resolved, turbulent
fluctuations (Rauwoens, 2008). Because of these imperatives, and since the
numerical simulations will be restricted to 2D in the following, LES is not
explored further in this work.

The last approach for turbulence modeling treats the flow from a
statistical point of view, restricting the description of turbulence to a subset
of statistical properties, e.g. the mean value and (co-)variance of velocity
components. The Reynolds-decomposition technique leads to the so-called
RANS equations, where an instantaneous flow variable q is separated into
a mean (ensemble-averaged) component q and a fluctuating component
q′. In RANS, the breaking of large turbulent structures into smaller ones
is not simulated, hence a 3D grid is not strictly necessary. In general,
the requirements to the discretization are also less stringent, because of
the relatively large importance of the turbulent model terms. The RANS
equations for an incompressible fluid read:

∂ui
∂xi

= 0 (5.7a)

∂ui
∂t

+ uj
∂ui
∂xj

= gδiz −
1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρu′iu′j

]
(5.7b)

The shear stresses in eq. (5.7b) arise from momentum transfer at molecular
level (viscous contribution) and from the fluctuating velocity field (turbulent
contribution). The turbulent shear stresses −ρu′iu

′
j , often referred to as the

Reynolds shear stresses, require additional modeling to close the RANS
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equation for solving. This has led to the creation of a number of turbulence
models. In flow-3d, two types of two-equation turbulence transport
models are incorporated: the standard k-ε and the ReNormalization Group
(RNG) model. Both are highlighted briefly further on. It is of importance
to mention that the application of the turbulence models is limited to the
clear-fluid region, thus not within porous media.

The k-ε and RNG turbulence models, like many others, are based on
the turbulent-viscosity hypothesis of Boussinesq (1877). This hypothesis,
analogous to the stress-rate-of-strain relation of a Newtonian fluid, states
that the Reynolds shear stresses are directly proportional to the mean rate
of fluid deformation:

− ρu′iu
′
j = µT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij (5.8)

where µT=µT (xi, t) is the dynamic eddy or turbulent viscosity which varies
in space but is assumed to be isotropic however. k is the turbulent kinetic
energy, defined as:

k =
1

2
u
′
iu
′
i (5.9)

Substitution of eq. (5.8) in eq. (5.7b) yields:

∂ui
∂t

+uj
∂ui
∂xj
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1
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∂
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2

3
ρk

)
+

∂
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[
νeff

(
∂ui
∂xj

+
∂uj
∂xi

)]
(5.10)

where
νeff (xi, t) = ν + νT (xi, t) (5.11)

is the effective kinematic viscosity, i.e. the sum of molecular (ν) and turbu-
lent kinematic viscosity (νT ). Equation (5.10) has the same appearance as
the incompressible Navier-Stokes equation (5.3), with ui and νeff in place
of ui and ν and with p+ 2

3ρk as the modified pressure term.

Standard k − ε model

The standard k-ε model (Harlow and Nakayama, 1967; Launder and
Spalding, 1974) consists of two transport equations, for the turbulent kinetic
energy k and dissipation rate ε, respectively:

∂k

∂t
+ uj

∂k

∂xj
= νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

+
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
− ε (5.12a)

∂ε

∂t
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ε

k
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+
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)
∂ui
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∂
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νT
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)
∂ε
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]
− Cε2

ε2

k
(5.12b)
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where the terms are from left to right: local derivative, convective derivative,
production, diffusion and dissipation. A dimensional analysis yields a
definition of the turbulent viscosity, necessary to link the momentum
equation (5.10) with the transport equations (5.12) :

νT = Cµk
2/ε (5.13)

Standard values of the model constants in the k − ε turbulence model
equations are:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 (5.14)

RNG k − ε model

The RNG method, similar to the k-ε model, accounts for the effects of
smaller scales of motion by applying a renormalization technique to the
Navier-Stokes equations, see e.g. Yakhot et al. (1992). This method results
in a modified form of the ε equation, attempting to account for different
scales of motion through changes in the production term. This modification
makes the RNG model more sensitive to flows having strong shear regions,
due to the presence of the source term R:

∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

k
νT

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

+
∂
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)
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]
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ε2

k
−R

(5.15a)

R =
Cµη

3(1− η/η0)

1 + βη3
ε2

k
(5.15b)

η =
k

ε

√
2SijSij (5.15c)

where Sij is the mean-rate-of-strain tensor, defined for incompressible flow
as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.16)

All constants (except β) appearing in eqs. (5.15) are derived explicitly
in the RNG procedure. It is noticed that the source term according to
eq. (5.15b) is an ad hoc model, not derived explicitly from RNG theory
(Pope, 2000). Standard values of the model constants in the RNG model
equations are:

Cµ = 0.0845, Cε1 = 1.42, Cε2 = 1.68,

σk = 0.7194, σε = 0.7194, η0 = 4.38, β = 0.012
(5.17)
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Minimum dissipation rate and limits for turbulent scales

A particular numerical challenge of both the standard and RNG k-ε model
is to limit the value of ε from below. In case eq. (5.12b) or (5.15a) yields
values of ε close to zero, the turbulent kinetic energy should approach zero
as well. If for numerical reasons this is not the case, eq. (5.13) yields large,
unphysical values of νT . Therefore, a minimal value for ε is defined as:

εmin = Cµ

√
3

2

k3/2

TLEN
(5.18)

where tlen is a maximum turbulent length scale. In flow-3d, this
parameter can be defined by the user. Alternatively, a value of tlen
(varying in space and time) can be computed by the program. In the latter
procedure, the lower bounds of the turbulent length (LT ) and time scales
(TT ) are based on the Kolmogorov scales, whereas the upper bounds are
based on the rapid distortion theory (Isfahani and Brethour, 2009):

LT,min = 70ν3/4ε−1/4 (5.19a)

LT,max =
0.86

Cµ

√
k

S
(5.19b)

TT,min = 6

√
ν

ε
(5.19c)

TT,max =
0.35

Cµ

1

S
(5.19d)

where ν is the molecular kinematic viscosity and S the mean strain rate
magnitude computed from the second invariant of the strain tensor Sij .

The length scale LT , subject to the limits given by eqs. (5.19a, 5.19b) is
then replacing tlen in eq. (5.18). The inverse of the time scale TT , subject
to the limits given by eqs. (5.19c, 5.19d), is used in the right-hand-side of
eq. (5.12b) or (5.15a), where ε/k appears.

5.3.4 Free-surface modeling
Different techniques for free-surface modeling applied in NS models were
discussed in section 2.3.1. flow-3d employs the VOF method (Hirt and
Nichols, 1981), in which fluid configurations are defined in terms of a VOF
function F (x, y, z, t). The interpretation of the F -function depends on how
the fluid problem is being solved. Two options exist for the specific case of
water in contact with air. In the first approach, referred to as single-fluid
modeling, the air is not treated as a fluid but rather as a void, a region
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without fluid mass with a uniform reference pressure assigned to it. In
the void, no fluid properties are transported, which means a considerable
reduction of computational effort. In this case, F represents the volume
fraction occupied by the fluid. Thus, fluid exists where F = 1, and void
regions correspond to locations where F = 0. Averaged over a control
volume, the value of F will be within the segment [0,1].

In two-phase modeling, when water and air are explicitly treated as
two different phases, the F -function represents the volume fraction of
the incompressible phase (water), whereas the complementary region with
volume fraction 1−F represents the compressible phase (air) that may have
a constant density or a density computed from the fluid equation-of-state.

It is important to recognize that the F -function is defined a discon-
tinuous function in order to accurately track a sharp free surface or two-
fluid interface. A prerequisite to the numerical implementation of the VOF
method is to advance the fluid interface in time without destroying its
character as a discontinuity. Moreover, it is necessary to impose proper
boundary conditions at the free surface in single-fluid modeling.

5.3.5 Initial and boundary conditions

The model equations for momentum, turbulence and the free surface are
partial differential equations, approximating the physics of the processes
they model for every possible manifestation of the process of interest.
In order to solve a specific problem, initial and boundary conditions are
required.

Initial conditions specify the flow at the initial time step at every location
in the computational domain. In case of waves propagating in a wave flume,
the fluid at rest in the whole computational domain is a common and trivial
initial condition, imposing a hydrostatic pressure distribution and a zero
velocity field. An initial reference pressure in the void or air region can be
specified as well.

Boundary conditions represent the external factors acting in the specific
flow problem through the boundaries of the domain. Hereafter, the
boundary conditions for the momentum, turbulence and free-surface model
equations are discussed.

Velocity

The velocity at the boundary will be affected by the type of boundary, which
can be either solid or open. A solid boundary represents solid objects in
the computational domain, such as the bottom or side wall of the flume, or
any other object placed inside the domain. For a solid boundary, mainly
two types of conditions apply:



74 Chapter 5

1. no-slip condition : this condition states that on the solid boundary, there
is no motion of the fluid relative to the solid

ui = vs,i (5.20)

with vs the velocity of the solid. This type of condition is valid for a
viscous fluid (µ 6= 0) and is used to model the flow in the boundary layer
next to the rigid wall.

2. free-slip condition : this condition states that the tangential shear stress
exerted by the solid is zero. In this case, the fluid velocity next to the
solid boundary is only forced to match the normal velocity of the surface:

uins,i = vs,ins,i (5.21)

where ns,i are the components of the unit vector ns normal to the solid
surface, positive pointing outward.

An open boundary is a boundary through which fluid can enter or leave
the domain. It is used to model the inflow of waves and/or currents or
represent an outflow boundary through which waves or currents leave the
domain without reflection. Multiple velocity boundaries are implemented in
the code, going from a constant velocity (representing a current) to different
types of linear and nonlinear wave boundary conditions. In case of a wave
boundary, both the position of the free surface and velocity components at
the boundary are specified according to the governing wave theory. More
details on the wave boundary condition are given in section 6.2.3.

Pressure

Different pressure conditions exist, depending on the flow modeling type.
In case of one-fluid flow, the pressure of the void region can be initialized
to a value p0 and stays constant during the computation.

In case of two-phase flow, where the water and air are treated as two
separate fluids, an initial pressure condition can be applied to the air region.
This is generally the atmospheric pressure, acting as a reference to any other
pressure in the flow. This condition is usually applied to the upper closure
of the computational domain.

A pressure boundary condition can also be applied at the mesh boundary.
In the specific case of a numerical wave flume however, this kind of boundary
is not employed.

Free surfaces and fluid interfaces

At the free surface or fluid interface, the F -function satisfies a kinematic
boundary condition. Assuming the continuity of velocity, the free surface is
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ensured to be a material surface that always consists of the same particles4.
In the absence of mass sources, the kinematic condition reads:

∂F

∂t
+

∂

∂xi
(Fui) = 0 (5.22)

In two-phase flow, a diffusion term is added to the right-hand side of
eq. (5.22) to account for the turbulent mixing of both phases:

∂F

∂t
+

∂

∂xi
(Fui) =

∂

∂xi

(
νT
Sc

∂F

∂xi

)
(5.23)

where Sc is the turbulent Schmidt number, a dimensionless number used
to characterize fluid flows in which there are simultaneous momentum and
mass diffusion-convection processes. It physically represents the relative
thickness of the hydrodynamic layer and the mass-transfer boundary layer.
The diffusion term with a simple gradient transport according to eq. (5.23)
is only appropriate for homogeneous flows where the size of the energy-
containing eddies is smaller than the distance over which the gradient
varies appreciably (Shirani et al., 2006). For flows near the interface with
inhomogeneous turbulence, a more appropriate model would include both
gradient and convective transport terms, see e.g. Lumley (1975).

In case of single-fluid flow, the normal and tangential stress need to be
specified as dynamic boundary conditions at the free surface, guaranteeing
the continuity of stress components. The normal stress arises from the
prescribed void pressure p0 and the equivalent surface tension pressure.
Denoting n as the unit normal on the free surface and ni as the projection
of n on the coordinate directions xi, the continuity of the normal stress at
the free surface boundary is written as:

p− µ
(
∂ui
∂xj

+
∂uj
∂xi

)
ninj = p0 + σκs (5.24)

where σ is the fluid surface tension coefficient (in units of force per unit
length) and κs the local free-surface curvature.

For 3D problems, two unit tangential vectors tk (k=1,2) are needed
to define the local tangent plane on the free surface. tki is defined as the
projection of tk on the coordinate directions xi. The continuity of the
tangential stress across the free surface is expressed as:

µ

(
∂ui
∂xj

+
∂uj
∂xi

)
nit

k
j = tkj

∂σ

∂xj
(5.25)

4This only holds for a free surface that does not break up for instance due to wave
breaking.
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In case of two-phase flow modeling, the contact region between water
and air appears as an interface in the domain. The interface does not require
the specification of a dynamic boundary condition since the solution at the
interface comes out naturally of the equations of motion.

Turbulent model boundary conditions

Boundary conditions to the turbulence transport equations (5.12) and
(5.15a) are to be specified either at a free surface, an inflow/outflow or
a solid boundary.

Advective fluxes of turbulent quantities into empty cells are set to
zero since there is no fluid in those cells to either supply or receive the
fluxed quantities. The same condition applies to an outflow condition.
Mathematically, this takes the form of a null-flux condition:

∂k

∂xi
ni = 0 ,

∂ε

∂xi
ni = 0 (5.26)

At inflow boundaries, the turbulent kinetic energy k and dissipation rate
ε must be specified:

k = k0 , ε = ε0 (5.27)

At solid domain boundaries or internal obstacles where a no-slip
condition is applied, contributions to the transport equation for k and ε
need to be included, which arise from tangential wall shear stresses τw.
Because the number of mesh points required to resolve all the details in
the turbulent boundary layer would become prohibitively large in practical
calculations, the flow is forced to match the law of the wall or log-law, which
is an approximation for fully-developed, steady flow along a flat boundary:

u‖ = u?
[

1

κ
ln

(
u?d

ν

)
+ 5

]
(5.28)

where u‖ is the velocity component parallel to wall, κ is the von Karman
constant and d the normal distance from the wall to the location where the
velocity u‖ is computed. The local shear or friction velocity u? is defined
from the wall shear stress τw as:

u? =

√
τw
ρ

(5.29)

For eq. (5.28) to be valid, the point where u‖ is calculated should fall within
the turbulent log-law region. This is equivalent with the following restraint
to the viscous length scale y+ (Versteeg and Malalasekera, 1995):

30 < y+ =
u?d

ν
< 500 (5.30)
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For a high-Reynolds number, fully-developed flow, the boundary values
of ε and k can be derived under the assumption of the logarithmic velocity
profile eq. (5.28) and the turbulent viscosity hypothesis eq. (5.8). In the
log-law region, it can be assumed that turbulent production and dissipation
are in balance, leading to the boundary conditions for k and ε (Pope, 2000):

k =
(u?)2√
Cµ

, ε =
(u?)3

κd
(5.31)

5.4 Implementation

In the previous section, the equations governing the physics of the wave
interaction with a permeable coastal structure have been described. Due to
the nonlinear nature of the partial differential equations, analytical solutions
are not readily available. For almost every particular problem of interest,
flow predictions are to be obtained by solving the equations with numerical
methods.

In this numerical solution, the governing equations will be approximated
by systems of algebraic equations. This requires a discretization of the
equations, approximating continuous functions of time and space with a
finite amount of information. The partial differential operators appearing
in the governing equations express a variation in time and space. Due to
their different character, they will be discretized in a different manner.

In the following, the numerical solution methods implemented in flow-
3d are discussed. First, practical details are given on the mesh construction,
the representation of obstacles and the allocation of flow variables. Next,
the spatial discretization of the governing equations is treated, followed by
a discussion on the time advancement of the discretized equations and the
application of stability conditions to the time advancement.

Again, this discussion is organized with a focus on wave-structure
interaction, paying special attention to the representation of porous media
and free-surface tracking. Great part of the following is a synopsis based
on the available information in the flow-3d manual (Flow Science, Inc.,
2011). For details on the code not included here, reference is made to this
manual.

5.4.1 Mesh generation and obstacle representation

Mesh generation involves the definition of a set of non-overlapping polygons
(in 2D) or polyhedra (in 3D) which completely fill a well-defined domain
in space. In flow-3d, the mesh is structured, meaning that the volume
elements or cells are well ordered. The cells can be mapped on simple data
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structures in a structured mesh, using a simple scheme to label elements
and identify neigboring cells. Both Cartesian and cylindrical meshes can
be defined in flow-3d, and cell dimensions can be uniform or non-uniform.

One of the main benefits of a structured mesh is the ease of grid
generation, with a minimal amount of information to be stored. One of
the main drawbacks involves the representation of complex geometries.
Unlike unstructured meshes, where general hexahedral cells can be used
which conform with specified geometric shapes (a body-fitted mesh), the
rectangular elements employed in a Cartesian mesh cannot accurately define
complex geometric surfaces. The latter would have to be approximated by
blocking out entire cells, leading to boundaries having discrete steps. These
steps introduce flow losses and produce other undesirable effects.

In order to overcome this problem, obstacles are allowed to cut through
the cells (cut-cell method). The latter method is referred to in flow-3d as
the Fractional Area/Volume Obstacle Representation (FAVOR) method
(Hirt and Sicilian, 1985). Curved obstacles, wall boundaries or other
geometric features are embedded in the mesh by defining the fractional
areas (Ai) and volumes (VFi,j,k) of the cells that are open to flow. The VFi,j,k
function is defined as the ratio of the open volume to the total volume in a
mesh cell, and three Ai functions are defined as the ratio of the open area to
the total area, at the three cell faces in the increasing cell-index direction.

The philosophy behind the cut-cell method is that the numerical
algorithms are based a limited amount of information for each cell (each
flow variable), so it would be inconsistent to use an excessive amount of
information to define geometry (Flow Science, Inc., 2012). The cut-cell
technique retains the simplicity of rectangular elements while representing
complex geometric shapes at a level consistent with the use of averaged
flow quantities within each volume element. Three area fractions and one
volume fraction for each cell are stored, which is relatively little information
compared with body-fitted grids.

Grids and geometry are free to be defined independently of one another,
with very little time or effort on the part of a user. The work of
computing the intersections between a grid and an obstacle description,
is fully automized. This is a main advantage over unstructured grids, where
the grid generation process is not completely automatic and may require
considerable user interaction to produce grids with acceptable degrees of
local resolution while at the same time having a minimum of element
distortion.

An important point to recognize is that approximations of fluid-dynamic
quantities are restricted to the open regions of cells in this cut-cell method.
This restriction introduces the factors Ai and VFi,j,k directly into the discrete
approximations. For example, the flux of a quantity from one cell to another
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has the fractional area of the fluxing boundary that is open to flow as a
multiplier. In general, the area and volume fractions are time independent,
except when the moving obstacle model (GMO) is employed.

In spite of the aforementioned advantages of structured meshes in
combination with a cut-cell method, some inconveniences exist as well. First
of all, applying a local mesh refinement in a particular zone of interest is not
possible in a structured mesh. This can be overcome by employing multiple
meshes (mesh blocks) with different cell dimensions that are coupled at their
boundaries (either adjacent to each other or nested in each other). However,
in order to limit numerical approximation errors, restrictions exist to the
maximum ratio of adjacent cell dimensions of different mesh blocks, and
hence to the increase in resolution achieved by adding one extra mesh block.

As a second drawback of the cut-cell method, it is important to recognize
that it is limited by the resolution of the computational grid (Flow Science,
Inc., 2011). This limitation is associated with the way area fractions are
defined. For each cell face in a mesh, first it is determined which corners of
the face are inside and which are outside of a defined geometry component:

• If all four corners of a cell face are inside the component, then the entire
face is defined to be within the component.

• Similarly, if all corners lie outside, then the entire face is assumed to be
outside the component.

• When some face corners are inside a component and some are outside, the
area fraction generator computes the intersection of the component with
the face edges. Area fractions are then computed from these intersection
points assuming straight-line connections between intersection points
within the face. The straight-line assumption introduces a small error
in the fractional area when the component boundary is curved inside the
cell. The approximation improves as the grid resolution is refined.

The implication of this face construction method is that any piece of a
component extending across a cell face, but not including a corner of that
face, is not recognized by the area fraction generator. For instance, a
spherical subcomponent smaller than a mesh cell will not be recorded unless
it covers at least one cell vertex. If the component surface has sharp edges
then a multiple intersection is likely to occur, with the cell face intersecting
more than one neighboring edge. In this case the corresponding cell edge is
assumed to be either fully inside the object or fully outside it, leading to a
representation error. The representation is improved as the mesh resolution
is increased.
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5.4.2 Arrangement of flow variables

With each cell there are associated local average values of all dependent
variables. A staggered scheme is used to represent fluid velocities and
pressures, illustrated in Figure 5.1: u-velocities and fractional areas Ax at
the centers of cell faces normal to the x-direction, v-velocities and fractional
areas Ay at the centers of cell faces normal to the y-direction, and w-
velocities and fractional areas Az at the centers of cell faces normal to
the z-direction. Pressures p, fluid fractions F , volume fractions VFi,j,k , area
fractions Ai, densities ρ, turbulence quantities (k and ε), and viscosity µ
are at cell centers.

The staggered arrangement is attractive because it maintains strong cou-
pling between pressure and velocity and does not lead to spurious pressure
oscillations, often referred to as the checkerboard problem. Furthermore,
staggered arrangements do not require ad-hoc boundary conditions for the
pressure, and can simultaneously conserve mass, momentum and kinetic
energy for an inviscid flow (Harlow and Welch, 1965).

Figure 5.1: Location of variables in a mesh cell.

Before discussing the numerical solution method, some notes on the
notation are given, adopted from the flow-3d user manual (Flow Science,
Inc., 2011). The finite-difference, Cartesian mesh used for numerically
solving the governing equations consists of rectangular cells of width δxi,
depth δyj and height δzk. The active mesh region has IBAR cells in
the x-direction labeled with the index i, JBAR cells in the y-direction
labeled with the index j, and KBAR cells in the z-direction labeled
with the index k. This region is surrounded by layers of fictitious or
boundary cells used to set mesh boundary conditions. In total, there are
(IBAR+ 2) ∗ (JBAR+ 2) ∗ (KBAR+ 2) cells in a complete mesh block.

A variable Q at the center of a cell (i, j, k) is denoted as Qni,j,k, where
the superscript n refers to the n-th time step value.

Velocities are located at the cell-faces, denoted as e.g. uni,j,k for the
x-component located at the middle of the cell face between cells (i, j, k)
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and (i+ 1, j, k) at time level nδt. Fractional areas are denoted as AFRi,j,k
(between cells (i, j, k) and (i+ 1, j, k)), AFBi,j,k (between cells (i, j, k) and
(i, j + 1, k)) and AFTi,j,k (between cells (i, j, k) and (i, j, k + 1)).

When free surfaces or fluid interfaces are present, it is necessary to
distinguish those cells that are empty, contain a surface, or are full of one
fluid. By definition, a surface cell is a cell containing fluid #1 and having
at least one adjacent cell (at i±1, j±1, k±1), that is empty or full of fluid
#2. A cell with an F value less than unity, but with no empty neighbor, is
considered a full cell in single-fluid problems. A flag NFi,j,k is used to label
the cells and also, in the case of surface cells, to indicate which neighboring
cell lies in the direction of the inward normal to the surface. The flag values
are indicated in Table 5.1. NFi,j,k is used to indicate the orientation of the
interface between two fluids in an analogous manner.

Table 5.1: Definition of flag values NFi,j,k

NFi,j,k interpretation

0 full or obstacle cell
1 surface (i− 1 inward neighbor)
2 surface (i+ 1 inward neighbor)
3 surface (j − 1 inward neighbor)
4 surface (j + 1 inward neighbor)
5 surface (k − 1 inward neighbor)
6 surface (k + 1 inward neighbor)
7 cell undergoing cavitation
8 empty cell

5.4.3 Spatial discretization of momentum terms

The discretization of different terms in the momentum equation contain-
ing a spatial derivative is discussed in the following. Finite-difference
approximations are formulated, based on Taylor series expansions of flow
variables. The terms to be discretized in eq. (5.3) concern, from left to right
: momentum advection, a pressure gradient and viscous shear.

In flow-3d, the term ∂τi,j/∂xj refers to internal viscous shear, i.e. away
from solid boundaries. Wall shear stresses originating from solid boundaries
with a no-slip condition are added separately in the momentum equation
as force contributions. With the inclusion of fractional area functions Ai,
vanishing at solid walls, it is then straightforward to apply the specific
wall-boundary condition. The discretiation of the wall shear stress is also
included in this discussion.
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The discretization of the transport of turbulent quantities (advection-
diffusion) is not treated here. More details on this topic can be found in the
user manual (Flow Science, Inc., 2011).

Momentum advection : basic approach

In order to obtain finite-difference approximations to the advective fluxes,
momentum control volumes are centered in each cell about the right face
for x-momentum, the top face for y-momentum and the back face for z-
momentum transport. For brevity’s sake, the discussion is limited here to
the transport of ui,j,k-momentum in the x-direction. Figure 5.2 shows the
control volume.

Figure 5.2: Control volume (dashed line) in (x,z)-plane used in finite-difference
approximation for ui,j,k-momentum (after Flow Science, Inc., 2011).

The advective fluxes can be written either conservatively (∇uu) or
nonconservatively (u∇u). The conservative approach is preferred, since it
automatically ensures the conservation of momentum in a finite-difference
approximation. In a non-uniform mesh however, the order of accuracy
of the convective flux discretized in the conservative form is reduced by
one, because the control volume is not centered about the position of the
velocity component ui at the cell face (Hirt and Nichols, 1981). In order to
maintain at least first-order accuracy in a non-uniform mesh, the fluxes are
approximated in a non-conservative form in flow-3d.

In the basic approach, a first-order upwind and centered-difference
approximation are combined into a single expression with a parameter
(alpha, α) that controls the relative amount of each. The approximation
to the advection of u-momentum in x-direction, denoted as FUX, reads:

(FUX)i,j,k = 1
2V FC

[
(UAR− α|UAR|)

(
∂u
∂x

)
i+1,j,k

+(UAL+ α|UAL|)
(
∂u
∂x

)
i,j,k

] (5.32a)

UAR =
ui+1,j,kAFRi+1,j,k + ui,j,kAFRi,j,k

2
(5.32b)
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UAL =
ui,j,kAFRi,j,k + ui−1,j,kAFRi−1,j,k

2
(5.32c)

V FC =
δxiVFi,j,k + δxi+1VFi+1,j,k

δxi + δxi+1
(5.32d)

where the velocity gradients in eq. (5.32a) are defined as:(
∂u

∂x

)
i,j,k

=
ui,j,k − ui−1,j,k

δxi
(5.33a)

(
∂u

∂x

)
i+1,j,k

=
ui+1,j,k − ui,j,k

δxi+1
(5.33b)

UAR and UAL are the advecting velocities, averaged between the cell face
velocity ui,j,k and the velocities at cells to the right and left of cell (i, j, k),
respectively. Similar terms FUY and FUZ are developed for the advection
of u in y- and z-direction respectively, as well as terms FVX(Y,Z) and
FWX(Y,Z) for the advection of v- and w-momentum.

The basic idea underlying eqs. (5.32) is to weight the upstream quantity
being fluxed more than the downstream value. The weighting factors are
(1+α) and (1−α) for the upstream and downstream direction, respectively.
The stream direction is determined by the sign of velocities UAR and
UAL. When α = 0, the approximation reduces to a centered-difference
approximation that is spatially second-order accurate when the mesh is
uniform. When α = 1, the first-order, upwind discretization is retained.

The presence of an obstacle is directly taken into account by incorpo-
ration of the area functions in the advecting velocities and by the factor
V FC, defined as the averaged volume fraction of both cells (i, j, k) and
(i + 1, j, k) surrounding ui,j,k. It is noticed that the formulation of the
advecting velocity in eq. (5.32a) is different from other formulations from
predecessor codes (e.g. NASAVOF-2D, RIPPLE), where the advecting
velocity is taken as the face velocity ui,j,k. The formulation of eq. (5.32a)
has the advantage however to reduce to a conservative approximation when
the mesh is uniform.

Second-order approximation to momentum advection

The first-order upwind approximation yields stable results and has the
property ofmonotonicity , which means that no new extrema are created and
the value of a local minimum/maximum is non-decreasing/non-increasing
in time. However, the upwind scheme also leads to high levels of
numerical dissipation, causing sharp gradients of the convected quantity
to be smoothed out in subsequent time levels. This may require a relatively
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high mesh resolution to obtain an accurate first-order solution. In such
cases, it can be worthwhile to use higher-order schemes that are less
prone to numerical dissipation. In flow-3d, two different second-order
approximations methods are incorporated.

The essence of the first method is a double pass through the first-order
advection subroutine in the code. In the first pass, the first-order downwind
method is used with α = −1. The resulting velocities are then stored in
the arrays for the previous time velocities. The first-order calculations are
then repeated, but this time with the upwind-differencing approximation
(α = 1). Finally, the results of the two calculations are averaged to give
the desired second-order approximation to the new time-level velocities.
The resulting approximation is second-order in time in general, and second-
order in space in a uniform mesh. This algorithm is the least numerically
diffusive of the three advection methods available in flow-3d. However, it
does not possess the transportive property (monotonicity), which may lead
to instabilities (wiggles) in the solution.

The other method is based on the second-order monotonicity-preserving
upwind-difference method by Van Leer (1977). The higher-order dis-
cretization scheme consists of second-order polynomial approximations to
the advected quantity, using a splitting method in which each coordinate
direction is treated separately. The method is applicable to momentum
advection as well as scalar quantities such as density, (turbulent) energy and
fluid fraction. The method is briefly described here, limiting the discussion
to the approximation of a variable Q advected in the x-direction. More
details on the method are given by Bronisz and Hirt (1991).

To achieve a second-order accurate approximation in a non-uniform
mesh, the approximation to the value fluxed through a cell face, denoted as
Q*, needs to be third-order. The approach adopted by Van Leer (1977) is
then to make polynomial approximations to the variable Q in function of
h, the distance measured from the center of cell (i, j, k):

Q(h) = Qi +Ah+
1

2
B

(
h2 − 2hh0 −

1

12
δx2i

)
+O(h3) (5.34)

where Qi is the cell-centered value of Q, and A and B are defined in
combination with h0 such that:

∂Q

∂h
= A+O(h2) at h = h0 (5.35a)

∂2Q

∂h2
= B +O(h) (5.35b)

h0 is thus the location where A is a second-order approximation to the first
derivative of Q.
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The third-order accurate approximation to Q* is obtained by integrating
eq. (5.34) over the volume of the cell that is fluxed across the boundary in
one time step δt, i.e. from h = δxi/2 − ui,j,kδt to h = δxi/2. If h0 is
carefully chosen, the approximation simplifies to:

Q* = Qi +
A(1− C)δxi

2
(5.36)

where Qi is the cell-centered value and C is the CFL number (ui,j,kδt/δxi).
Eq. (5.36) holds exclusively for the location:

h0 =
(1− 2C)δxi

6
(5.37)

The coefficient A can easily be computed from two neighboring first
derivatives by linear interpolation, provided these derivatives are second-
order accurate. The latter can be achieved by computing the derivatives at
the midpoints between Qi locations; for example,(

∂Q

∂x

)
i+1/2

= 2
Qi+1 −Qi
δxi+1 + δxi

(5.38)

is a second-order accurate first derivative of Q at the point between Qi and
Qi+1. With this approach, the extension of the second-order, monotonicity-
preserving method to non-uniform grids is straightforward.

To ensure monotonicity, it is necessary to restrict the value of the
derivative A to twice the minimum magnitude of the centered Q-derivatives
used in its computation (Van Leer, 1977):

A ≤ 2min

(
dQ

δxi
,
dQ

δxi+1

)
(5.39)

Furthermore, if Qi is a local minimum or maximum value - that is, if the
two centered derivatives appearing in the equation (5.39) are of opposite
sign - then A is set to zero and the method reduces to a first-order upwind
approximation.

Pressure gradient

Pressure is evaluated in the center of cell (i, j, k). The discretized form of
the pressure gradient − 1

ρ
∂p
∂xi

reads, e.g. in x-direction:

− 1

ρ

pi+1,j,k − pi,j,k
δxi+1/2

(5.40)

In the notation of cell dimensions, the fractional subindex implies an
averaging of neighboring cell dimensions, e.g. for the x-direction:

δxi+1/2 =
δxi + δxi+1

2
, δxi−1/2,j,k =

δxi−1 + δxi
2

(5.41)
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Viscous shear stress

The term ∂τij/∂xi in eq. (5.3), representing internal viscous shear (i.e. away
from solid boundaries), is discretized using a standard second-order central-
differencing scheme. For an incompressible fluid, the discretization in the
x-direction reads:

(V ISX)i,j,k = 1
ρ

(
∂τxx
∂x +

∂τyx
∂y + ∂τzx

∂z

)
i,j,k

= 1
ρ

(
(τxx)i+1,j,k−(τxx)i,j,k

δxi+1/2
+

(τyx)i,j,k−(τyx)i,j−1,k

δyj

+
(τzx)i,j,k−(τzx)i,j,k−1

δzk

) (5.42)

where the normal stress component is approximated in the cell center:

(τxx)i,j,k = 2µi,j,k

(
ui,j,k − ui−1,j,k

δxi

)
(5.43)

and tangential stress components at the vertices, e.g.:

(τyx)i,j,k = µi,j,k

(
ui,j+1,k − ui,j,k

δyj+1/2
+
vi+1,j,k − vi,j,k

δxi+1/2

)
(5.44)

Similar terms V ISY and V ISZ are developed in y- and z-direction,
respectively. In case a RANS turbulence model is used, the viscosity is
evaluated as the effective viscosity according to eq. (5.11).

Due to the application of the porous media flow model, which includes
the microscopic viscous shear, terms VISX(Y,Z) inside porous media are to
be considered as macroscopic, related to gradients in seepage velocity.

Wall shear stress

The wall shear stresses are modeled assuming a zero relative tangential
velocity on solid boundaries with the no slip-condition prescribed. It is
important to remark that the approach in flow-3d, modeling the wall
shear stresses as a separate term in the momentum equation, only holds for
solid boundaries, since in that case the interface between the solid boundary
and the fluid is resolved. Under the averaging approach (seepage velocity
concept, see section 2.3.2), microscopic velocity gradients and resulting
shear stresses at the interface between a porous medium and the clear
fluid cannot be computed. Instead, all viscous and pressure forces are
lumped into a flow loss term, described by the porous media flow model
(Barkhudarov, 2012).

The wall shear acceleration for the w-velocity equation is derived here,
denoted as WSZ. Terms WSX(Y ) are likewise obtained in the remaining
directions. Wall shear influencing w can arise from any of the four wall
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areas located on x or y cell-faces surrounding wi,j,k. For any one of these
faces, if the fractional flow area Ai is less than unity, the remaining area
fraction (1−Ai) is considered to be a wall on which a stress is generated.

If the flow is treated laminar, the acceleration due to tangential wall
shear is proportional to the molecular viscosity µ and local velocity
gradients, and can be approximated as:

1

ρ

∂

∂x

(
µ
∂w

∂x

)
(5.45)

For instance on an x-face to the right of wi,j,k, the discretized approximation
to eq. (5.45) reads:

(WSZ)i,j,k = − 2µi,j,k
ρVFi,j,kAFTijkδx

2
i

[
1− (AFRi,j,k +AFRi,j,k+1)

2

]
(wi,j,k − w0)

(5.46)
where the velocity wo is either zero or equal to the z-direction tangential
velocity at a moving solid boundary. Because wi,j,k is located on the
boundary between cells (i, j, k) and (i, j, k + 1), an averaged value for the
fraction area AFR is used. Similar stress components as in eq. (5.46) are
evaluated at each of the four surrounding cell walls, and their sum is taken
as the total stress WSZ.

For turbulent flows, a logarithmic velocity profile according to eq. (5.28)
is assumed near the wall, which modifies the wall shear stress magnitude.
Using the definition of the shear velocity eq. (5.29), the approximation to
the wall shear acceleration reads:

(WSZ)i,j,k =
1

VFi,j,kδxi

[
1− (AFRi,j,k +AFRi,j,k+1)

2

]
(u?z)

2 (5.47)

Since the FAVOR method does not precisely locate wall locations within
a cell, approximations must be introduced to find u‖, u? and d. For this
purpose, the direction of the wall normal in the cell is first determined, and
u‖ is computed as the component of the cell-centered velocity parallel to the
wall (relative to the wall velocity in the considered direction). The average
distance to the wall (d0) is estimated to be half of the cell width in the wall
normal direction. That is, the triplet (δxi,δyj ,δzk) is treated as a vector
whose inner product with the wall normal is defined as the cell width in
the normal direction. Finally, u? is iteratively computed from eq. (5.28) in
terms of u‖ and d0.

Both laminar and turbulent wall shear stresses can be modified by
defining a wall roughness length, specified through the parameter rough.
The wall roughness length is incorporated into the usual shear stress
calculations by adding to the molecular viscosity the product of ρ, rough
and ui, the latter being the difference between the local fluid velocity and the
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wall velocity in the considered direction. For turbulent flow, the law-of-the-
wall relation retains the same form as for a smooth wall, except the change
in viscosity (i.e., from νeff to νeff +rough∗ui) automatically converts the
logarithm dependence from a characteristic length scale defined by νeff/ui
to the roughness length, when rough is the larger of the two characteristic
lengths.

5.4.4 Time advancement of conservation equations
The spatial discretization of the conservation equations results in a system
of coupled ordinary differential equations with respect to time, in which
pressure and velocity are the unknowns. In the following, the method to
compute the equations one increment in time (δt) is discussed.

First, the discretized form of the conservation equations is given. In case
of an incompressible fluid, the mass conservation eq. (5.2) reads:

AFRi,j,ku
n+1
i,j,k −AFRi−1,j,ku

n+1
i−1,j,k

δxi
+
AFBi,j,kv

n+1
i,j,k −AFBi,j−1,kv

n+1
i,j−1,k

δyj

+
AFTi,j,kw

n+1
i,j,k −AFTi,j,k−1w

n+1
i,j,k−1

δzk
= 0

(5.48)

Note that the presence of an obstacle, either solid or porous, is accounted for
in eq. (5.48) by inclusion of the area fractions (AFRi,j,k,AFBi,j,k,AFTi,j,k).

The momentum eqs. (5.3) for each direction read, with gravity (g) as
the only acting body force:

un+1
i,j,k − u

n
i,j,k

δt
= −(FUX + FUY + FUZ)ni,j,k −

1

ρ

pn+1
i+1,j,k − p

n+1
i,j,k

δxi+1/2

+gx + (V ISX)
n+1|n
i,j,k − Fdun+1

i,j,k − (WSX)n+1
i,j,k

(5.49a)

vn+1
i,j,k − v

n
i,j,k

δt
= −(FV X + FV Y + FV Z)ni,j,k −

1

ρ

pn+1
i,j+1,k − p

n+1
i,j,k

δyj+1/2

+gy + (V ISY )
n+1|n
i,j,k − Fdvn+1

i,j,k − (WSY )n+1
i,j,k

(5.49b)

wn+1
i,j,k − w

n
i,j,k

δt
= −(FWX + FWY + FWZ)ni,j,k −

1

ρ

pn+1
i,j,k+1 − p

n+1
i,j,k

δzk+1/2

+gz + (V ISZ)
n+1|n
i,j,k − Fdwn+1

i,j,k − (WSZ)n+1
i,j,k

(5.49c)

where the terms FU(V,W )X(Y, Z) and VISX(Y,Z) discussed in the
previous section denote the convective fluxes and acceleration due to internal
viscous shear, respectively. Fd is the porous drag coefficient according to
eq. (5.5) and WSX(Y,Z) the acceleration due to the wall shear stress.
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The superscript n+ 1|n refers to the time discretization scheme, which
can be either implicit (evaluation at time level tn+1) or explicit (at time
level tn). Convective fluxes are treated explicitly by default. Viscous shear
stresses can be treated either explicitly or implicitly, upon judgment of the
user which method is most suitable for solving the specific flow problem.
Wall shear stresses are treated in an implicit way to avoid possible numerical
instabilities arising in cells with large wall areas and small flow volumes.
An implicit treatment is then no longer susceptible to the time step size.
Since the wall shear terms are linear in flow velocities, their solution is
straightforward.

Flow in porous media are modeled with a drag force proportional to the
first power of the velocity, Fdui. For the applications with coarse granular
media, the formulation according to eq. (5.5) is suitable. To compute a
limit to the drag term for incompressible flow, it is necessary to treat the
drag terms implicitly, not only in the momentum equations but also in the
continuity equation. This is accomplished by using the velocity in the drag
term at time level n + 1 and algebraically solving the difference equation
for the new velocity. The result is a division of all contributions to the
new velocity by the term (1 + Fdδt). Keeping the effect of this extra term
throughout all pressure/velocity adjustments then ensures that a balance
between pressure gradient and drag forces can be achieved that also satisfies
the continuity equation.

The major difficulty related to the time advancement of the discrete
NS equations is that the mass-conservation equation does not contain an
explicit derivative in time if the flow is incompressible. The incompressibility
constraint rather acts as a kinematic constraint to the velocity field and
couples pressure and velocity implicitly. The pressure can be considered as
an auxiliary variable needed to maintain the incompressibility constraint.
Fractional-step methods (Chorin, 1968) are without any doubt the most
widespread technique to decouple the computation of the pressure from
the advancement of the momentum equation. The advantage of such an
approach is that the decoupled systems for p and ui can be solved at a
lower expense.

The basic idea of the fractional-step method is to isolate the pressure
gradient from the other terms in the momentum equation and use it for the
projection of the velocity field onto a solenoidal field. The several steps of
this method include:

1. The intermediate velocities u∗i are computed from the current-time (tn)
advective, pressure, and other accelerations:
u∗i,j,k − uni,j,k

δt
= −(FUX + FUY + FUZ)ni,j,k −

1

ρ

pni+1,j,k − pni,j,k
δxi+1/2

+gx + (V ISX)
∗|n
i,j,k − Fdu

∗
i,j,k − (WSX)∗i,j,k

(5.50a)
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v∗i,j,k − vni,j,k
δt

= −(FV X + FV Y + FV Z)ni,j,k −
1

ρ

pni,j+1,k − pni,j,k
δyj+1/2

+gy + (V ISY )
∗|n
i,j,k − Fdv

∗
i,j,k − (WSY )∗i,j,k

(5.50b)

w∗i,j,k − wni,j,k
δt

= −(FWX + FWY + FWZ)ni,j,k −
1

ρ

pni,j,k+1 − pni,j,k
δzk+1/2

+gz + (V ISZ)
∗|n
i,j,k − Fdw

∗
i,j,k − (WSZ)∗i,j,k

(5.50c)

where terms with a superscript ∗ are evaluated with intermediate
velocities, i.e. implicitly. In case the viscous shear stresses are treated
explicitly, solving for intermediate velocities is straightforward. In case
they are treated implicitly, different solver algorithms (Jacobi iteration
or an Alternating Direction Implicit (ADI) method) are used to solve for
intermediate velocities u∗i , depending on the pressure-velocity method in
the next step (Yao, 2004). In case the GMRES solver is used (see next
step), a Generalized Conjugate Gradient (GCG) algorithm is applied.

2. The ‘new’ velocity at time level n+ 1 is related to the intermediate one
u∗i through the following relationship:

un+1
i,j,k − u∗i,j,k

δt
= −1

ρ

p′i+1,j,k − p′i,j,k
δxi+1/2

(5.51a)

vn+1
i,j,k − v∗i,j,k

δt
= −1

ρ

p′i,j+1,k − p′i,j,k
δyj+1/2

(5.51b)

wn+1
i,j,k − w∗i,j,k

δt
= −1

ρ

p′i,j,k+1 − p′i,j,k
δzk+1/2

(5.51c)

where p′i,j,k = pn+1
i,j,k − pni,j,k represents the pressure change in each cell

(i, j, k). Substitution of eqs. (5.51) into the mass continuity eq. (5.48)
yields the pressure-Poisson equation (written here in differential form for
the sake of brevity):

∂(Aiu
∗
i )

∂xi
=
δt

ρ

∂2(Aip
′)

∂x2i
(5.52)

Basically two methods are incorporated in flow-3d in order to solve
eq. (5.52). The first one, referred to as Successive-Over-Relaxation
(SOR) uses a Newton type of relaxation process, adjusting the pressures
on a cell-by-cell basis to enforce the mass conservation. A second method,
using the Generalized Minimal Residual (GMRES) algorithm, solves the
linear system of eq. (5.52) simultaneously throughout the domain by an
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iterative technique (Brethour, 2009). In both algorithms, a convergence
criterion is applied to the velocity divergence in each cell:∣∣∣∣∂ui∂xi

∣∣∣∣ ≤ epsadj ∗ 9.10−5δt−1 (5.53)

Convergence can be tightened optionally by setting epsadj to a value
lesser than 1. It is also possible to supply a fixed value to the convergence
parameter epsi, which then replaces the right-hand-side in eq. (5.53) and
makes the convergence criterion independent from δt.

3. After convergence is obtained, the velocities a time level n + 1 are
corrected with the gradient of the new pressure p′ using eqs. (5.51).

4. In a last step in fluid problems with a free surface or fluid interface,
eq. (5.22) must be updated to give the new fluid configuration. The
advection of other scalars (e.g. turbulence quantities) is also performed
in this step. The next subsection discusses the time-advancement of fluid
configuration into more detail.

Repetition of these steps will advance a solution through any desired
time interval. At each step, suitable boundary conditions must be imposed
at all mesh, obstacle, and free-surface boundaries. More details on the
numerical implementation of these boundary conditions can be found in the
user manual (Flow Science, Inc., 2011).

5.4.5 Time advancement of fluid configuration
For the general case of fluid flow in the presence of an obstacle, either porous
or solid, the kinematic free-surface boundary condition eq. (5.22) needs to
be discretized (written here in the absence of mass sources and, in case of
two-phase flow, neglecting turbulent mixing):

VF
∂F

∂t
+

∂

∂xi
(AiFui) = 0 (5.54)

The numerical solution of eq. (5.54) must prevent unphysical distortion
of the free surface and preserve its sharpness (Barkhudarov, 2004). The
original VOF advection method developed for both single and two-fluid
problems (referred to as the ‘standard method’ in flow-3d) is based on
the donor-acceptor approach first introduced by Hirt and Nichols (1981).
Numerous enhancements have been made to the original algorithm to
improve its accuracy and stability in complex one- and two- fluid flows
with sharp interfaces. The standard method uses operator splitting and old
time-level values of the F -function to compute fluxes in three coordinate
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directions. The approach creates a possibility of overfilling or over-emptying
computational cells when volume fluxes are significant in all three directions
and when δt is close to the local Courant stability limit (see section 5.4.6).

More recently developed methods are referred to as the unsplit and
split Lagrangian method in flow-3d. These advection methods, suitable
for both single and two-phase flow, have been developed to alleviate the
aforementioned deficiencies of the standard algorithm. The fluid interface
is reconstructed in 3D using a piecewise linear representation, where the
interface is assumed to be planar in each control volume (or cell) containing
the interface. The fluid volume bounded by the interface and cell faces
is then moved according to the local velocity vector in a Lagrangian
manner. Finally, the advected volume is overlaid back onto the Eulerian
grid to obtain the new values of the F -function. This combination of
the Lagrangian and Eulerian methodology gives the method its name.
There is no difference in how the interface is reconstructed in both
Lagrangian methods. The difference is only in how fluid is moved after the
reconstruction. In the ‘unsplit’ method, it is moved along the 3D velocity
vector, while in the ‘split’ method, it is moved first in x-direction, then in
y-direction and finally in z-direction, with the interface being reconstructed
after each step (Barkhudarov, 2012).

Generally, the two Lagrangian methods exhibit good accuracy in
tracking sharp interfaces in complex 3D motions. The split Lagrangian
method typically produces lower cumulative volume error than the other
methods, although the volume error may increase when this method is used
together with the moving obstacle model. More details on the Lagrangian
methods are given by Barkhudarov (2004).

When applying the free-surface boundary conditions and advection of
the F -function, it is necessary to determine an approximate direction normal
to the free surface. The neighboring cell closest to the direction of the inward
normal to the surface is recorded by specifying integer values of cell flags
NFi,j,k (see Table 5.1). More details are provided in Flow Science, Inc.
(2011).

Methods are available in the code to suppress instabilities related to
misty fluid regions, i.e. isolated fluid drops due to excessive splashing and
free-surface breakup. The adjustment consists in artificially removing the
fluid distribution in misty regions, for a cell (and all adjacent cells) with
a value of F below the parameter fclean, typically between 0 and 0.1.
Foaming is another issue related to the extreme deformation of the free
surfaces. In this case, an algorithm is available to eliminate the small voids
in a flow with significant free-surface breakup. The algorithm, referred to
as F -packing and only used in single-fluid flows, works by creating small
negative divergences in internal fluid cells in which the fluid fraction is less
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than 0.99. The rate of F -packing is proportional to the coefficient cfpk.
The default value is 1, when it is equal to 0 no packing will take place.

5.4.6 Stability conditions and time step control

The explicit schemes previously discussed need a limitation to the time
step size δt in order to remain stable. Several criteria are applied to the
maximum allowable timestep:

1. The fluid must not be permitted to flow across more than one computa-
tional cell in one time step. This advective transport depends not only
on the velocity but also on the fractional area/volume open to flow. The
basic stability condition is a modification of the CFL condition:

δt < con ∗min
(
VF δxi
Axu

,
VF δyj
Ayv

,
VF δzk
Azw

)
(5.55)

The default value of con amounts to 0.45 in case of incompressible flow.
A cell with a large open face area and a small volume could restrict the
time step to small values if there is significant flow in this cell. Should
this happen, it can be determined by monitoring the mesh locations
controlling the time step as printed in the output. In this case, it may
be necessary to modify the mesh/obstacle arrangement. An algorithm
is implemented in the code which automatically adjust these ratios by
making small adjustments in volume fractions.

2. Free surfaces also introduce another type of stability condition associated
with the propagation of surface waves. If an acceleration accn is applied
to the fluid in a direction normal to the free surface (in this case accn= g,
the gravitational constant), there can be surface waves with speeds of
order

√
ACCN.h , where h is the depth of fluid or length of the wave. In

practice, the cell size in the normal direction is used for h, together with
an extra safety factor of 0.5 in the stability test. The actual condition is
that surface waves should not propagate more than one cell in one time
step. For example, if z is the normal direction to the surface and accz
is the normal acceleration, then the stability limit reads:

δt < 0.5 ∗ min(δxi, δyj)√
δzkACCZ

(5.56)

Similar limits must be imposed in the x- and y-directions for each cell
containing a free surface.
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3. A linear analysis indicates that the time step must be further limited
when a non-zero value of dynamic viscosity is used. This condition is

δt < 0.25 ∗max

[
RM ν

(
1

δx2i
+

1

δy2j
+

1

δz2k

)]−1
(5.57)

where rm is the maximum multiplier used on ν for all types of diffusional
processes. The restriction physically means that no quantity should
diffuse more than approximately one mesh cell in one time step. For
safety, an extra factor of 0.5 has been incorporated in the right side of
eq. (5.57) because the limit is otherwise marginal.

4. A last stability criterion regards the choice of the parameter alpha in
the first-order momentum advection approximation. When alpha=1.0
is used, the previous stability conditions are sufficient. Generally, a value
for alpha should satisfy the following condition:

δt ∗max
(
|u|
δxi

,
|v|
δyj

,
|w|
δzk

)
< alpha ≤ 1.0 (5.58)

If the first condition eq. (5.55) is fulfilled, eq. (5.58) implies that alpha
is larger than con.

The different options to control the evolution of δt are listed in Table 5.2
below.

Table 5.2: Time step control options

autot evolution of δt

0 constant
1 controlled by stability limit and number of pressure iterations
2 controlled by stability limit

If a constant time step is used (autot=0), the initial value can be set by
specifying δt, defaulted to twfin/100 (twfin being the total computation
duration). However, δt will be changed, even if a constant value has been
requested, when the advection of fluid fraction exceeds an amount equal to
twice the volume of the cell times the stability factor con (or 0.85 times the
volume of the cell if this is smaller). In this case the solution is returned
to its state at the beginning of the cycle before continuing, and the cycle is
repeated with the time step cut in half.

If autot is set to 1, the code will adjust the time step to be as large as
possible without violating stability conditions or exceeding the user-supplied
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maximum time-step size (dtmax). δt will also be reduced when pressure
iterations exceed corresponding nominal values that depend on the iteration
options. Generally, the time step will float up or down with 5% changes per
cycle unless a stability condition is violated, in which case a larger reduction
may occur. The maximum number of pressure iterations before reducing the
time step can be specified by means of the parameter itdtmax, defaulted
to 10 when the GMRES pressure solver is used.

If autot=2 is selected, the time step size will not be reduced if the
number of pressure iterations exceeds a certain value. The number of
pressure iterations per cycle is limited by itmax, defaulted to 100 for the
GMRES pressure solver.

5.5 Conclusions

Prerequisites to a numerical model for wave interaction with permeable
coastal structures are an effective treatment of the free surface and porous
media flow. The CFD code flow-3d has been selected to this purpose.
In this chapter, the basic model equations are discussed and a synopsis of
their numerical implementation is provided, for a better understanding of
the work developed subsequently.

flow-3d uses a cut-cell method for obstacle representation, together
with structured rectangular grids and a staggered mesh topology. The
philosophy behind this approach is to automize the grid generation process
as far as possible. The definition of volume and area fraction functions
enables a generalized approach for obstacle representation, applicable to
both solid and porous obstacles.

Modeling of free-surface flows is achieved with the VOF method. In
addition to the method based on the original donor-acceptor approach
(Hirt and Nichols, 1981), more contemporary methods including a PLIC
reconstruction scheme are available.

Flow in coarse granular media can be represented by a Forchheimer drag
term in the momentum equations. The impact on the mass continuity and
kinematic free-surface boundary condition is automatically fulfilled by the
inclusion of volume and area fraction functions.





6 | A numerical wave flume in
FLOW-3D®

6.1 Introduction

flow-3d is a general multi-purpose CFD code. It disposes of a standard
wave boundary condition to generate regular and irregular surface gravity
waves. However, to enable its operation as a numerical wave flume, it is
necessary to run test series with regular and irregular waves which remain
stable for a long period in time. Hence, measures need to be taken to
avoid re-reflection at the wave generation boundary, which would lead to
an excessive increase of the total wave energy in the flume and disturb the
desired incident wave field. Such a feature of the wave boundary condition
is called active absorption.

The wave boundary condition that comes standard with the code
however has no such technique for simultaneous absorption of the reflected
waves. This compelled to develop additional techniques for wave generation.
Because the code has a standard model for moving objects, an interesting
track consists of simulating the movements of a piston wavemaker, as it
is employed in a physical wave flume. Existing techniques for controlling
wavemakers with active absorption are well validated, and can be directly
adopted in a numerical wave flume.

This chapter describes the implementation of a first-order piston wave-
maker, which is the most simple type of wavemaker. First, details are given
on the implementation of a control system for the piston motion. This is
followed by an extensive set of validation tests, using wave conditions with
varying nonlinearity. The specific objectives of the tests are to investigate
the different parameters that can be selected in the numerical model,
affecting the operation of the piston and the propagation of free-surface
waves. In brief, the main objectives are to:

97
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• validate the piston wave generation, paying special attention to the time-
stability of long-duration wave simulations;

• validate the performance of the active wave absorption;

• identify the key numerical parameters controlling the operation of the
piston and the simulation of progressive waves, and obtain optimal
settings for those parameters.

6.2 Wave generation methods

The 2D Dirichlet wave boundary condition for regular and irregular waves
that comes standard with flow-3d, prescribing surface elevations and
velocity components at the mesh boundary, is probably the most efficient
and widely-used method for numerical wave generation. However, the
implementation in flow-3d does not include active wave absorption.
Although it would be possible to extend the wave boundary condition
with a method for active absorption, an alternative path is explored in
this work, modeling the movements of a piston wavemaker. The main
benefit of this approach is that the total amount of fluid within the wave
flume is automatically preserved. This is generally not the case for a wave
boundary condition, where a net inflow of fluid mass occurs over one wave
period. Particularly for highly-nonlinear waves and long test durations, the
accumulation of fluid inflow might eventually cause a significant deviation
from the initial water level, hence disturbing the hydraulic boundary
conditions of the considered flume test. Additional corrections are often
needed in order to compensate for the net inflow of fluid volume through
the wave boundary.

In the following section, the implementation of a piston wavemaker for
the generation of regular and irregular waves is presented, followed by a
description of the active absorption method. A short description of the
standard flow-3d wave boundary conditions is also included, since both
wave generation methods will be used in the validation tests.

6.2.1 Piston wavemaker
The piston wavemaker is implemented in flow-3d by means of the General
Moving Object (GMO) model, which simulates rigid body motion. The
motion of the piston will be prescribed for a position-controlled piston, a
type of wave generator which is operated in many laboratories. Here, the
most simple type of piston wavemaker is implemented, with a vertical face
moving horizontally above the flume bed. The motion of the piston is
assumed to be independent from fluid interaction.
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Generation of regular waves

Biesel and Suquet (1951) provided the theoretical background in order to
link a sinusoidal piston displacement X(t)=esin(ωt) to the surface elevation
η(x, t) of the progressive wave component generated by the piston:

η(x, t) = eKf sin(ωt− kx+ ϕf ) + eKn sin(ωt) (6.1a)

Kf =
4 sinh2(kh)

sinh(2kh) + 2kh
(6.1b)

Kn =

∞∑
n=1

2 sin2(knh) exp(−knx)

sin(knh) cos(knh) + knh
(6.1c)

where e is half the piston stroke S0, ω= 2π/T the pulsation frequency and
k and kn the wavenumbers obtained from the linear dispersion equations:

ω2 = kg tanh(kh) (6.2a)

ω2 = −kng tanh(knh), n > 0 (6.2b)

where kn is the nth real positive solution of eq. (6.2b). Kn(knh) and
Kf (kh) are transfer functions for the near and far field, respectively. The
first term in eq. (6.1a) describes a progressive wave with amplitude eKf

at large distance from the piston, the far-field solution. The far-field
surface elevation is shifted in phase with respect to the displacement of
the wavemaker. In case of a piston wavemaker, ϕf equals = π/2.

The second term in eq. (6.1a) refers to the near-field solution or
evanescent modes (Schäffer, 1996), representing a series of standing waves
near the piston, in phase with the piston movement. They are caused
by the difference between the velocity profile of the progressive wave and
the uniform velocity profile created by the piston. The transfer function
Kn contains a negative exponential factor to account for the decreasing
amplitude of evanescent modes with increasing distance from the piston.
In practice, the near-field solution can be discarded at a sufficient distance
from the piston, e.g. 3 times the water depth h (Dean and Dalrymple,
1991). According to Frigaard et al. (1993), the disturbance from the near-
field solution will be less than 1% of the far-field solution at a distance of
approximately one to two wave lengths from the piston.

In order to generate a sinusoidal monochromatic progressive wave with
wave height H and wave number k in a water depth h, the piston stroke
S0 = 2e becomes:

S0 =
H

Kf (kh)
(6.3)
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Limitations to the operation of the piston wavemaker exist. The limit
of Kf in eq. (6.1b) tends to zero when kh approaches 0. Consequently,
the piston stroke S0 would need to become very large in order to generate
long waves. Practical limitations, both in the physical and the numerical
wave flume restrict the maximum allowable piston stroke, which renders the
generation (and absorption) of long waves difficult.

The GMO model in flow-3d requires the prescription of the object
velocity, which implies that piston control velocities rather than displace-
ments need to be specified. A customizable subroutine mvbvel_usr.f is used
to pass the velocities to the moving object, in order to generate the desired
progressive wave field. Existing LabView® subroutines, used in the piston
control software of the wave flume of the Civil Engineering Dept. (Ghent
University) were modified to generate the file piston_left.vel, containing
the horizontal piston velocities derived from the piston displacements. The
sampling rate of piston control velocities are specified with the parameter
fs.

Generation of irregular waves

The previous method can be equally used to generate irregular waves. Here,
the so-called random phase method is used (Tuah and Hudspeth, 1982), a
deterministic method producing wave trains of finite durations which match
the specified wave characteristics exactly.

Random waves are simulated in the frequency domain and subsequently
transferred using a Fast Fourier Transfer (FFT) algorithm in order to obtain
the time series of surface elevations. The discrete amplitude wave spectrum
corresponding to the target wave energy spectrum is combined with a
random phase spectrum synthesized from a random number generator. The
several steps to obtain the piston control signal include:

1. defining a target wave energy density spectrum Sη(f), according to
e.g. Pierson-Moskowitz (Pierson and Moskowitz, 1964) or JONSWAP
(Hasselmann et al., 1976);

2. choosing the sample frequency fs and spectral resolution N (half the
number of Fourier components). This yields the frequency domain
resolution ∆f = fs/N . The discrete wave energy spectrum ση(fi) is
computed as:

σ2
η(fi) = Sη(i∆f)∆f (6.4)

3. computing the discrete piston-displacement energy spectrum σx(fi):

σ2
x(fi) = σ2

η(fi)[Kf (kih)]−2 , i = 1..N (6.5)
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where the Biesel transfer function Kf is a function of the discrete wave
number ki = k(fi);

4. calculating the N complex Fourier coefficients C = A+ iB by picking a
random phase ϕf between 0 and 2π, for all frequencies smaller than the
Nyquist frequency fN = fs/2:

Ai = cos(ϕ(fi))
√
σ2
x(fi)/

√
2

Bi = sin(ϕ(fi))
√
σ2
x(fi)/

√
2

(6.6)

The N Fourier coefficients are mirrored to the Nyquist frequency fN in
order to obtain a hermitian Fourier Transform, i.e.:

CN+i = C∗N−i+1 , i = 1..N (6.7)

where * denotes the complex conjugate;

5. applying the inverse Fourier transform and calculating the time series
of the control signal X(t) for the piston. The real part of the inverse
Fourier transform is the time series, the imaginary part is zero because
the Fourier transform is Hermitian.

In the same way as for regular wave generation, the piston displacements
X(t) are converted into piston control velocities, which are stored in the file
piston_left.vel.

6.2.2 Active wave absorption

Methods for wave generation with active wave absorption were originally
developed for physical wave flume experiments (Frigaard and Christensen,
1994). A velocity-meter based method for a VOF model with a Dirichlet
wave boundary condition was presented by Troch and De Rouck (1999).
A method based on the same principle is implemented here, with the
necessary modifications to enable an operation in combination with a piston
wavemaker.

Working principle

The principle of the active wave absorption is indicated in Fig. 6.1 and
comprises two steps. Firstly, an on-line detection of velocities (u,w) at
position (x1,z1) in front of the piston is performed. The measurement of
these velocities enables the detection of the reflected wave field.

In a second step, a correction signal u∗ref for the piston control velocity is
computed, which will cancel out the reflected wave component propagating
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Figure 6.1: Definition sketch of active wave absorption system implemented in
flow-3d.

towards the piston. The correction signal u∗ref is determined from the two
filtered velocity signals u∗ and w∗. Digital FIR filters are used to compute
a time-domain discrete convolution of the velocities (u,w) and the impulse
response hi (where i=u or w); e.g. for the u-velocity component:

u∗[n] =

Jf−1∑
j=0

hu[j]u[n− j] (6.8)

where Jf is the number of filter coefficients and u∗[n] = u∗(n∆tf ) the
filter output at time t = n∆tf , with ∆tf the filter time interval. The
impulse response hi(t) is determined from inverse Fourier transformation of
the complex frequency response function Hi(f), composed of a gain Ci(f)
and a phase ϕi(f) (i=u or w):

Re(Hi(f)) = Ci(f) cos(ϕi(f)) (6.9a)

Im(Hi(f)) = Ci(f) sin(ϕi(f)) (6.9b)

The additional surface elevation η∗ = u∗ + w∗ to be generated in order to
absorb the reflected wave is equal to η−R = aR cos(ωt + ϕR + π), which
is the reflected wave component at the generation boundary, in opposite
phase. The derivation of the gain Ci(f) and a phase ϕi(f) for a system
with a wave boundary condition is given by Troch and De Rouck (1999):

Cu(f) =
− sinh(kh)

2ω h(k(h+ z1))
(6.10a)

Cw(f) =
− sinh(kh)

2ω sinh(k(h+ z1))
(6.10b)
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ϕu(f) = π − kx1 (6.10c)

ϕw(f) = π − kx1 + π/2 (6.10d)

Applying the Biesel transfer function (eq. (6.1b)) and a phase shift ϕf
converts η∗ into a corrected piston displacement: X∗(t) = K−1f aR cos(ωt+
ϕR + ϕf + π). The time derivation of X∗(t) yields the required correction
signal for the control velocity u∗ref , and is simply obtained by amplifying
the velocity signal by ω and applying a phase shift ϕ(f) = π/2. This leads
to the following expressions for the gain and phase defining the frequency
response eq. (6.9):

Cu(f) =
− sinh(kh)

2Kf cosh(k(h+ z1))
(6.11a)

Cw(f) =
− sinh(kh)

2Kf sinh(k(h+ z1))
(6.11b)

ϕu(f) = π − kx1 + ϕf + π/2 (6.11c)

ϕw(f) = π − kx1 + π/2 + ϕf + π/2 (6.11d)

Design of digital filters

Inverse Fourier transformation of the theoretical complex frequency re-
sponse function, denoted as Hi

theo(f), delivers the theoretical impulse
response hitheo(t). In practice, a finite number (Jf ) of filter coefficients
is used:

hitheo[j] = J−1f

Jf−1∑
k=0

Hi
theo[k] exp(i2πkjJ−1f ) (6.12)

where hitheo[j] = hitheo(j∆tf ) is the value of the theoretical filter coefficient
at discrete time steps t = j∆tf (j = 0..Jf − 1), where ∆tf=T0f/Jf is the
filter time interval determined from the filter duration T0f .

By using a finite number of filter coefficients in the Fourier transforma-
tion, the filter response may deviate from the theoretical response for input
frequencies not coinciding with one of the discrete filter frequencies. As a
result, it is recommended to verify the filter performance for intermediate
frequencies which do not coincide with the discrete theoretical filter
frequencies. This can be achieved by means of an oversampling technique
and proves particularly useful for the absorption of reflected wave spectra.

It is noticed that the number of filter coefficients Jf is virtually unlimited
in a numerical model, since the filter convolution is not exectuted in real
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time as it is the case in a physical wave flume (see further). The parameters
which define the filter design are:

• the filter duration T0f , the most important parameter of the filter
design. It defines the filter frequency interval ∆ff=T−10f , which mainly
determines the accuracy of the filter operation. In between discrete values
of ∆ff , the realized filter response might deviate from the theoretical gain
and phase. In case of regular waves with period T , it is possible to achieve
good performance when ∆ff is a multiple of T−1, even with a limited
frequency resolution. In case of irregular wave generation, the frequency
resolution should be chosen as high as possible, yet in accordance with
the length of the wave flume. Practically, the filter should have reached
a ‘steady state’ when the reflected waves reach the wave piston, yielding
the following condition:

T0f < 2Lstruct/C (6.13)

where Lstruct is the distance between the piston and the intersection of
SWL and the tested structure, and C the wave celerity.

• for a given filter duration, the number of filter coefficients Jf defines
the filter time interval ∆tf = T0f/Jf or the execution rate of the
convolution eq. (6.8). Operation in a physical wave flume requires a real-
time response of the piston to the reflected waves. This constrains the
number of filter coefficients, since the calculation time of the convolution
increases with Jf . Such a restriction does not exist in a numerical
model, where the time step is advanced after the completion of the active
absorption procedure, including the computation of the convolution. This
allows an arbitrary definition of the filter time step, a property that later
on will turn out useful in the numerical simulations. The input control
and the corrected control velocities are prescribed at equal time intervals
∆tf , as in the physical wave flume. A different execution rate of piston
movements (fs) and filter operation (fsf=∆t−1f ) is possible, but has not
been considered in this study.

• the cut-off frequencies fLC and fHC define the frequency interval
in which the realized frequency response of the filter should match the
theoretical response as closely as possible. This interval corresponds to
the interval wherein all the energy of the wave spectrum is concentrated.

• the position (x1,z1) of the point where velocities are detected. By
changing x1, a phase shift in the filter operation is applied. This can be
useful to avoid high-amplitude filter components at the initial and final
instant of the filter duration, which deteriorates the filter performance.
The value of z1 has little effect on the filter performance. Considering
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however that the active absorption method is based on the linear wave
theory, a sufficient distance with SWL should be respected (> h/3), in
order to minimize the performance reduction under nonlinear waves. The
latter is due to the deviation from the linear velocity profile, which is
largest near SWL. Hereafter, z1 is always chosen equal to −0.4h.

The frequency response (eqs. (6.11)) shows one singularity in the gain
Cw(f) at f = 0 Hz. For high frequencies, zero gain is prescribed to avoid
quick transitions in the phase shift. In addition, a cosine taper is applied to
the theoretical gain Citheo(f), in order to obtain a gradual transition between
zero gain and the theoretical value on both sides of the cut-off limits:

Cireal(f) = 0.5Citheo(fLC)

[
1 + cos

(
πf

fLC
+ π

)]
; f ∈ [0; fLC ] (6.14a)

Cireal(f) = 0.5Citheo(fHC)

[
1 + cos

(
π(f − fHC)

5∆ff

)]
; f ∈ [fHC ; fHC + 5∆ff ]

(6.14b)
Moreover, a tapering of the filter coefficients hi can be applied to get a
more stable digital filter. Existing LabView® code of the active absorption
system operated in the wave flume of Ghent University has been adapted
using the theoretical filter responses given by eqs. (6.11). In summary, the
several steps in the design of the digital filter include:

1. selecting the filter duration T0f , which should be chosen as large as
possible to obtain the highest accuracy (certainly in case of irregular
waves). An upper bound can be estimated from eq. (6.13);

2. selecting Jf , which determines the filter time interval and filter sample
frequency fsf ;

3. selecting fLC and fHC according to the generated wave period. In case of
regular waves, a smaller frequency interval can be chosen, which simplifies
the filter design. Care should be taken however that possible higher-order
components in the reflected wave field arising from nonlinear interactions
can be properly neutralized by the piston. It is recommended to take
fHC not smaller than 2T−1. In case of irregular waves, the interval
fp/3 < f < 3fp is generally respected. Choosing a value of fLC slightly
larger than the lower bound (fp/3) can improve the filter performance,
although the margin to adjust fLC is limited due to the shape of the wave
spectrum, which generally shows a steeper slope in the lower frequency
range (f < fp);

4. adjusting x1 in order to achieve small (or zero) values of the filter
coefficients at the initial and final instant of the filter duration. This
can significantly improve the filter performance.
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The control parameters defining the active wave absorption system are
included in Table 6.1. They are implemented in the flow-3d customizable
subroutine mvbvel_usr.f.

Table 6.1: Control parameters for active wave absorption.

parameter control option

paddle_left (0 or 1) (de)activate piston
awa (0 or 1) (de)activate active wave absorption
xpistonL [m] position of the right face of the piston
dx1 [m] distance between right piston face and measurement

location
zpos [m] distance between SWL and vertical position of

measurement location
dpaddle [m] water depth near piston
fs = fsf [Hz] sample frequency of piston velocities and filter

execution rate

6.2.3 Wave boundary conditions
Linear and nonlinear wave boundary conditions are available in the standard
version of flow-3d. Nonlinear waves can be generated with a wave
boundary based on Fenton’s Fourier Series method (Fenton, 1988; Rienecker
and Fenton, 1981). In order to prevent the aforementioned problem of
fluid accumulation through the wave boundary, the code provides a default
option that eliminates the net volume influx through the wave boundary
(irmflux=1). Tests have shown however that the efficiency of this remedy
is questionable, particularly for highly-nonlinear waves.

Other wave boundary conditions that come standard with flow-
3d enable the generation of cnoidal, solitary wave and random waves.
Standard wave spectra included in the random wave generator are the
Pierson-Moskowitz and JONSWAP spectrum. Additionally, it is also
possible to employ a user-defined wave energy spectum. For further details
on the implemented wave boundary conditions, the interested reader is
referred to the flow-3d user manual (Flow Science, Inc., 2011).

6.2.4 Considerations with linear generation methods
Nonlinear regular waves propagating with constant form in intermediate or
shallow water can be decomposed into free first harmonics and bound higher
harmonics. A linear wave generation method, either a piston wavemaker
or a wave boundary condition, does not include the natural bound higher
harmonics. This leads to the release of parasitic higher harmonics which will



A numerical wave flume in flow-3d 107

propagate as free wave components. The superposition of the free and bound
higher harmonics leads to a spatial modulation of the wave amplitude. In
a first estimate of the resulting surface elevation (Madsen and Sørensen,
1993), the second harmonic amplitude varies between 0 and 2 times the
bound wave amplitude with a repetition or beat length LB :

LB =
2π

k2 − 2k1
(6.15)

where k1 and k2 are the wave numbers corresponding to the free first and
second bound harmonic, respectively. It is noticed that in this simplified
description, subsequent sub- and superharmonic wave-wave interactions are
neglected, as well as near-resonant triad interactions.

In the following, it will be verified whether and to which extent the
piston wave generation is affected by harmonic generation.

6.3 Validation : 2D wave propagation over a
horizontal bed

The propagation of 2D progressive nonbreaking waves over a horizontal
bed is studied in detail in this section. Results obtained with the piston
wavemaker will be compared with the nonlinear wave boundary and a
theoretical solution based on Fenton’s Fourier series theory. In a first step, a
grid convergence study will be performed with the simplest spatial and time
discretization options. Next, further testing of more advanced numerical
options will be carried out. The goals of this study are to validate the
operation of the piston wavemaker, to determine the numerical settings
affecting the solution and to derive an optimal set of numerical parameters.

6.3.1 Test setup

The following study is limited to progressive waves. Reflection is prevented
by constructing a wave flume with sufficient length, in agreement with the
given test duration. Fig. 6.2 shows a definition sketch of the test setup. The
initial piston position x0 and flume length xR are specified in Table 6.2. In
case a wave boundary condition is used, the boundary coincides with x = 0.
All other mesh boundaries are modeled as a free-slip condition.

Uniform cell dimensions are used in the entire study, using one single
mesh block. Local mesh refinement by creating multiple mesh blocks is
not considered. In this way, interpolation errors associated with block
boundaries are avoided. The choice of uniform grid cells moreover delivers
the highest possible accuracy. This higher accuracy originates from the
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Figure 6.2: Definition sketch of the computational domain with indication of
reference system.

way the governing equations are discretized (see Chapter 5), since in the
evaluation of the change between quantities on either side of a cell, higher
order terms cancel by symmetry in uniform cells (Flow Science, Inc., 2011).

The moving piston is represented by a solid obstacle. Care must be taken
that the edges of the box-shaped piston in initial position coincide with the
cell edges. Otherwise, the FAVOR obstacle representation, which is limited
by the mesh resolution, introduces discretization errors in the contact area
between the bed and the piston, allowing fluid to ‘leak’ into the dry area
behind the piston. Tests show that a minimum obstacle thickness of 2 cells
is required, again to avoid leakage of fluid caused by discretization errors.
Fig. 6.3 illustrates the initial position of the piston in the mesh. A tapering
of the piston movements is applied at the start and end of the test. In this
way, surface elevations gradually build up or decrease, minimizing possible
disturbances caused by excessive fluid acceleration.

Figure 6.3: Initial position of the piston in the mesh.

Wave conditions are adopted from GWK tests, which are used in the
validation study in Chapter 7. Four tests cases are selected (Table 6.2),
in such way that practically the entire range of wave conditions is covered.
Only regular waves are simulated at this stage, aiming to compare the results
of surface elevations and velocity profiles with the linear and nonlinear wave
theory.
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Table 6.2: Definition of 2D wave propagation test cases.

case h [m] T [s] H0 [m] L1[m] kh1[-] x0[m] xR[m] duration [s]

1 4.5 4.0 0.25 21.6 1.31 1.6 541.0 100
2 4.5 4.0 1.00 21.6 1.31 1.6 541.0 100
3 4.5 8.0 0.25 50.6 0.56 1.6 950.0 150
4 4.5 8.0 1.00 50.6 0.56 1.6 950.0 150

1 according to linear wave theory

Test wave conditions are shown together with the limits of linear and
nonlinear wave theories in Fig. 6.4. Theoretically, case 1 and 3 can be
described by second-order Stokes wave theory, showing a mildly nonlinear
character, close to linear waves. Waves in case 2 can be classified in between
second- and third-order Stokes wave theory. Waves in case 4 exhibit the
most pronounced nonlinear character, and are to be described by the fifth-
order Stokes theory.
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Figure 6.4: Location of wave conditions case 1 - 4 (Table 6.2) in diagram of
wave theories (after Le Méhauté, 1976).
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6.3.2 Basic grid convergence study
In the basic study, the first-order upwind momentum advection scheme will
be employed. In this case, truncation errors are proportional to:

• the first power in time increment dt

• the first power in space increments dx, dy, dz if alpha 6= 0

Notwithstanding the first-order scheme generally shows good properties in
terms of robustness and stability, it possibly produces larger numerical
dissipation. In the grid convergence study, the consistency of the solution
is verified by gradually reducing the cell dimensions. The aim of the
convergence study is thus to verify whether and to what extent the
simulations are sensitive to numerical dissipation. This dissipation can
become visible in terms of wave height reduction and phase lag.

In the basic approach, an explicit treatment of convective terms and
viscous stresses is applied. This imposes restraints to the time step size dt.
Therefore, the time step control algorithm will be used, which automatically
adjusts the time step size within the stability limits specified in 5.4.6.

When using the piston wavemaker, the sampling frequency fs of the
piston control velocities should be chosen in accordance with the resulting
time step. The impact of this parameter on the solution will be discussed
hereafter. Unless otherwise stated, the piston sample frequency fs employed
in all test cases is 40 Hz.

Since the studied problem deals with progressive nonbreaking waves,
the flow is assumed to be laminar. All computations are performed with
the split Lagrangian VOF advection method. The standard donor-acceptor
algorithm produces very similar results in terms of free-surface motion,
however also a considerably larger convective volume error. A list of relevant
numerical parameter settings of the basic convergence study is given in
Table 6.3. Other parameters not included in this table are set to default
values. The solver executable hydr3d version 10.0.3 is used in all tests.

Case 1

Convergence is tested using 4 different cell sizes dx ranging between 0.4 and
0.05 m. Fig. 6.5 shows the results of surface elevations η and depth-profile
of horizontal u-velocities under the passage of a wave crest and trough.
Numerical results are plotted together with the theoretical solution obtained
with Fenton’s Fourier series method (Fenton, 2012).

Fig. 6.5(a,b) show the results obtained with the piston wavemaker
at locations x=21.5 m (≈ 1L from the piston) and x=146.5 m (≈ 7L
from the piston), respectively. The surface elevations correspond with an
instant near the start of the wave train, after the wave generation is fully
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Table 6.3: Parameter settings in basic convergence study.

Option Setting Parameter

fluid fresh water (20◦ C), incompressible icmprs=0
viscosity Newtonian fluid ifvisc=1
turbulence laminar calculation ifvis=0
pressure solver GMRES igmres=1

standard convergence criterion epsadj=1
momentum advection explicit impadv=0

first-order, upwind iorder=1, alpha=1
viscous stress explicit impvis=0
VOF advection split Lagrangian method ifvof=6
F -packing default cfpk=1
time step control automatic (stability and convergence) autot=1
maximum dt default dtmax=1010 s

established. In order to enhance the comparison of surface elevations, a
time synchronization of wave crests at t/T=0.5 is applied. The small phase
lag between results is a consequence of a different time step size associated
with different cell sizes.

Surface elevations and velocity profiles show very limited differences
between runs with cell size dx 0.4 and 0.05 m. They are in almost perfect
agreement with the theoretical solution. The comparison between locations
at different distance from the piston points to spatially stable results.

Fig. 6.5(c,d) show the results obtained with the nonlinear wave boundary
generation based on Fenton’s Fourier series method. Again, good correspon-
dence with the theoretical surface elevation and velocity profiles is obtained.
However, slightly larger deviations from the theoretical solutions are noticed
at further distance from the piston, as seen in Fig. 6.5(d).

The stability of surface elevations and velocities in time is further
explored in Fig. 6.6, showing velocity profiles under the passage of a wave
crest and trough at the beginning and end of the wave train, for cell size
dx=0.05 m. Fig. 6.6(a,b) at respectively closer and larger distance from
the piston, show that the surface elevations and velocities are stable, both
in time and space. Fig. 6.6(c,d) show the same for the nonlinear wave
boundary. At larger distance from the wave boundary, larger variations in
surface elevation and velocity profile are noticed, albeit still limited.

The dependency of the wave height on the numerical mesh is verified
by calculating characteristic wave heights Hm,123 and Hm,456, obtained by
averaging the mean wave height Hm in 3 locations xi, indicated in Table 6.4.
The obtained averages are specified in Table 6.5, expressed as the relative
difference ∆ with H0 (= 0.25 m), the value specified at the generation
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boundary:

∆ =
Hm −H0

H0
(6.16)

Limited differences in averaged Hm values are noticed between different
cell sizes in Table 6.5. A more pronounced difference appears between H123

and H456, showing a slight reduction of wave height with increasing distance
from the piston or wave boundary. In all cases however, the obtained wave
height is within a range of 6% of the target value (Table 6.5). It seems
that the impact of the first-order momentum advection, and the expected
numerical diffusion resulting from this approximation is limited. Even with
the largest cell size tested (dx=0.4 m), a relatively accurate wave generation
is achieved. However, tests with cell sizes larger than 0.4 m show increasing
instabilities in surface elevations and velocities. A value of 0.4 m seems to
be a practical upper limit for the cell size dx in this case.

Table 6.4: Positions xi (in m) used in spatial averaging of Hm, case 1 and 2.

x1 x2 x3 x4 x5 x6

21.5 27 32.5 135.5 141 146.5

Table 6.5: Difference ∆ [%] between target wave height H0 (=0.25 m) and
spatially-averaged Hm, case 1.

piston wave boundary
dx [m] ∆123 ∆456 ∆123 ∆465

0.40 -2.00 -3.68 -2.52 -4.50
0.20 -1.54 -4.79 -2.01 -4.79
0.10 -2.34 -5.35 -1.85 -4.63
0.05 -0.05 -3.12 -2.31 -4.69
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Figure 6.5: Close-up on surface elevation η and horizontal velocity u(z) at an
instant near the start of the wave train. Numerical results generated with the
piston wavemaker and nonlinear wave boundary, at two different x-positions and
for two different cell sizes dx, case 1.
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Figure 6.6: Verification of time-dependent stability of surface elevation η and
horizontal velocity u(z) generated by the piston wavemaker and nonlinear wave
boundary, at two different x-positions, cell size dx=0.05 m, case 1.
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Case 2

The spatial variability of surface elevations is checked first, as the nonlinear
waves (Fig. 6.4) might be affected by harmonic generation (see 6.2.4). Free-
surface elevations resulting from both wave generation methods are plotted
at several distances in between x=65 m (≈ 3L from the wave boundary)
and x=80 m in Fig. 6.7. The distance covered (15 m) is approximately
equal to the theoretical beat length predicted by eq. (6.15), using the linear
wave theory to compute the wave numbers. Given the very limited spatial
variation of η in Fig. 6.7, it can be concluded that no significant harmonic
generation occurs. Generally, good agreement is observed between the
theoretical and numerical surface elevations.

The grid-dependency of the numerical solution is shown in Fig. 6.8,
providing a detailed view of the surface elevation over one wave period,
together with the corresponding horizontal velocities under the passage of
a wave crest and trough. The surface elevations correspond to an instant
near the start of the wave train, after waves have fully developed. As in the
previous case, wave crests are synchronized at t/T=0.5 in this comparison.

Fig. 6.8(a,b) show the results obtained with the piston wavemaker at
locations x=21.5 m (≈ 1L from the piston) and x=146.5 m (≈ 7L from
the piston), respectively. The accuracy of the solution clearly improves by
increasing the mesh resolution. For cell size dx of 0.05 m, numerical results
agree almost perfectly with the theoretical solution. The solution obtained
with dx=0.4 m clearly suffers from numerical dissipation, to an increasing
degree with increasing distance from the piston. Fig. 6.8(c,d) show similar
results, yet obtained with the nonlinear wave boundary. Slightly larger
deviations from the theoretical solution are noticed here.

In order to evaluate the time-dependent stability of the solution, a large
part of the total time series is shown in Fig. 6.9, together with depth-profiles
of u-velocities corresponding with a crest and trough, at two instants near
the beginning and the end of the wave train. The solution obtained with
the piston wavemaker (dx=0.05 m) is shown in Fig. 6.9(a,b) at location
x=21.5 m, and x=146.5 m, respectively. Clearly, a stable wave train is
obtained, both in time and space. Fig. 6.9(c,d) show similar results, yet
obtained with the nonlinear wave boundary. Again, as in case 1, the solution
seems to show a larger variability in time than with to the piston wavemaker.

Spatially-averaged values of Hm are given in Table 6.6, expressed as
the relative difference with H0 (=1.0 m). As expected, wave heights tend
to the target value when the mesh resolution increases. Simulations with
cell sizes 0.40 and 0.20 m are clearly affected by numerical dissipation. In
addition, a significant difference between H123 and H456 appears, showing
a clear reduction of wave height with increasing distance from the piston
or wave boundary. With a sufficient mesh resolution however, wave heights
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generated by the piston are within ± 2 % of the target value.

Table 6.6: Difference ∆ [%] between target wave height H0 (=1.0 m) and
spatially-averaged Hm, case 2.

piston wave boundary
dx [m] ∆123 ∆456 ∆123 ∆465

0.401 -5.91 -14.60 -5.85 -14.67
0.201 +0.03 -5.34 +0.35 -8.84
0.101 +1.95 -3.54 -2.37 -6.13
0.052 +2.08 -1.65 -3.19 -4.49

1 obtained with fs=40 Hz,
2 obtained with fs=100 Hz
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Figure 6.7: Variation of surface elevation η in between x=65 and 80 m,
corresponding with an instant near the end of the wave train, for test case 2.
Numerical surface elevations obtained with piston wavemaker and nonlinear wave
boundary condition (dx = 0.05 m), theoretical values with Fenton’s Fourier series
method.
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Figure 6.8: Close-up on surface elevation η and horizontal velocity u(z) at an
instant near the start of wave train. Numerical results generated with the piston
wavemaker and nonlinear wave boundary, at two different x-positions and for two
different cell sizes dx, case 2.
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Figure 6.9: Verification of time-dependent stability of surface elevation η and
horizontal velocity u(z) generated by the piston wavemaker and nonlinear wave
boundary, at two different x-positions, cell size dx=0.05 m, case 2.
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Case 3

Fig. 6.10 shows the surface elevation and velocity profiles in detail. No
significant differences between both generation methods are observed. It is
noticed that the surface profile obtained with the wave boundary condition
in Fig. 6.10(d) shows a more pronounced asymmetry with respect to the
vertical plane. Nonetheless, surface elevations and velocity profiles generally
agree very well with the theoretical solution. The comparison between
results obtained with dx=0.4 and 0.1 m indicate that convergence is already
obtained with the lowest mesh resolution.

Fig. 6.11 shows a large part of the entire time series where velocity
profiles are taken at instants corresponding with the start and end of the
wave train. It can be concluded that the results are stable in time, for both
wave generation methods.

Analogous to the previous cases, wave heights Hm,123 and Hm,456 are
obtained by averaging the mean wave height Hm in 3 locations xi, indicated
in Table 6.7. Table 6.8 shows the spatially-averaged wave heights, expressed
as the relative difference with H0(=0.25 m). It is noticed that a larger wave
height is obtained with the largest cell size (dx=0.4 m), in contrast to the
previous cases. If numerical dissipation were to have an effect, it should
decrease with increasing mesh resolution. One would then rather expect
the wave height to increase with increasing mesh resolution. Deviations
from the target wave height are limited however, within ± 5 %.

Table 6.7: Positions xi (in m) used in spatial averaging of Hm, case 3 and 4.

x1 x2 x3 x4 x5 x6

51.0 63.5 76.0 253.5 266.0 278.0

Table 6.8: Difference ∆ [%] between target wave height H0 (=0.25 m) and
spatially-averaged Hm, case 3.

piston wave boundary
dx [m] ∆123 ∆456 ∆123 ∆465

0.40 +0.36 -0.81 +0.12 +0.55
0.20 -1.89 -3.52 -0.80 -0.69
0.10 -2.32 -3.68 -1.76 -2.48
0.05 -1.12 -4.04 -3.21 -4.44
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Figure 6.10: Close-up on surface elevation η and horizontal velocity u(z) at an
instant near the start of the wave train. Numerical results generated with the
piston wavemaker and nonlinear wave boundary, at two different x-positions and
for two different cell sizes dx, case 3.
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Figure 6.11: Verification of time-dependent stability of surface elevation η and
horizontal velocity u(z) generated by the piston wavemaker and nonlinear wave
boundary, at two different positions x, cell size dx=0.10 m, case 3.
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Case 4

Of all four test cases in Fig. 6.4, waves in case 4 exhibit the highest
nonlinear character. The theoretical beat length according to eq. (6.15)
amounts to 146 m. Fig. 6.12 shows the free-surface elevation at eight
different locations in between one beat length. Computations with dx=0.1
m are shown, obtained with the piston wavemaker and the nonlinear wave
boundary condition. The comparison between different locations reveals a
clear variation of surface elevation for the linear piston wavemaker. At some
locations, secondary peaks in the trough appear. The spatial η-variation
caused by the release of higher harmonics is not observed with the nonlinear
wave boundary.

The surface profile generated by the piston wavemaker at location
x=150 m is very similar to x=296 m, an indication that the repetition of the
spatial variation corresponds well with the theoretical beat length predicted
by eq. (6.15). The harmonic generation under linear piston generation
results in larger wave heights compared to the waves generated by the
nonlinear wave boundary, as indicated in Table 6.9.

Fig. 6.13 shows the velocity profile at different locations in between
x=150 m and x=241.2 m, obtained with the piston wavemaker. Notwith-
standing the spatial variations in η, the wave train appears to be stable
in time in each location. The velocity profiles corresponding with the
passage of a crest and trough clearly deviate from the theoretical solution.
The discrepancy between numerical and theoretical profiles of u-velocities
increases when the local amplitude of the second harmonic reaches its
maximum value, at approximately half the beat length. In Fig. 6.13(c),
the sharp, peaked crest and flattened trough correspond with an increase in
u-velocities near the free surface.

Table 6.9: Difference ∆ [%] between target wave height H0 (=1.0 m) and
spatially-averaged Hm, case 4.

piston wave boundary
dx [m] ∆123 ∆456 ∆123 ∆465

0.201 +15.63 +4.13 -1.72 -1.55
0.101 +14.37 +3.41 -2.29 -1.60
0.052 +11.67 +1.46 -2.60 -1.78

1 obtained with fs=40 Hz,
2 obtained with fs=100 Hz
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Figure 6.12: Variation of surface elevation η in between x=150 and 296 m,
corresponding with an instant near the end of the wave train, for test case 4.
Numerical surface elevations obtained with piston wavemaker and nonlinear wave
boundary condition (dx = 0.10 m), theoretical values with Fenton’s Fourier series
method.
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Figure 6.13: Close-up on surface elevation η and horizontal velocity u(z)
generated by the piston wavemaker, at different locations x in between
approximately half the beat length, cell size dx=0.1 m, case 4.
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6.3.3 Further testing of numerical options

In the previous section, a first-order upwind discretization scheme for the
momentum advection terms was used in all simulations. In the following it
is tested whether a mixed first-order or second-order scheme yields better
results in terms of computational accuracy and/or efficiency. A discussion
on the time step control (section 5.4.6) is included in the following, since it
appears that the time step evolution is closely connected with the spatial
discretization of momentum advection.

Because of the larger wave height and absence of harmonic generation
in case 2, this particular case will be used to illustrate the impact of the
momentum discretization scheme and time step control on the solution. All
results are obtained with piston wave generation, with fs=40 Hz (unless
otherwise stated).

Momentum advection approximations

A variation to the first-order upwind scheme consists of a mixture of upwind
and centered differences (see 5.4.3) and is obtained by setting the weighting
factor alpha to a value between 0 and 1. Liu and Lin (1997) suggest to
take alpha in the range of 0.3 to 0.5. The impact of the weighting factor
alpha is studied by comparing the standard upwind scheme (alpha=1) to
a mixed scheme with alpha=0.3. Use is made of the automatic time step
algorithm, determined by stability constraints and the number of pressure
iterations (autot=1).

Fig. 6.14 shows the impact of alpha on the time step size. Clearly, the
mixed scheme results in a reduction of the time step size. In both cases, the
advection in the x-direction is the restraining limit to the time step size. It
is noticed that the value of alpha is smaller than the default value (0.45) of
the CFL stability limit (see section 5.4.6), hence eq. (5.58) yields the most
stringent condition to the time step limit.
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Figure 6.14: Impact of alpha on time step size dt, case 2.
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Surface elevations and corresponding velocity profiles under a passage of
a crest and trough are shown in Fig. 6.15, at location x=146.5 m, taken at an
instant corresponding to the start of the wave train. Comparison of results
between different cell sizes in Fig. 6.15 show that the mixed scheme is more
prone to numerical dissipation than the fully-upwind scheme (alpha=1).
For both mesh resolutions, a disturbance of the velocity profile near the free
surface is noticed with the mixed scheme. This could be the result of the
significant reduction in time step size.
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Figure 6.15: Impact of alpha on surface elevation η and horizontal velocity
u(z), shown at x=146.5 m, at an instant near the start of the wave train, case 2.

In the previous section, simulations with the first-order upwind scheme
proved to yield accurate results with limited numerical dissipation, when
the mesh resolution is sufficiently high. It was noticed that a higher mesh
resolution is needed for the cases with larger wave height. In the following,
it is verified whether a second-order advection scheme yields higher accuracy
for lower mesh resolutions. Both the regular (iorder=2) and monotonicity-
preserving (iorder=3) second-order scheme are used.

Fig. 6.16 shows the impact of the momentum discretization on the time
step size. A standard upwind differencing (alpha=1) is used in the first-
order scheme. Employing the automatic time step control with both second-
order schemes results in a significant reduction of the time step size in case
of a relatively coarse grid (Fig. 6.16(a)). On a finer grid, all time step sizes
result to be very similar (Fig. 6.16(b)).

Contrary to what one would assume, the second-order schemes do not
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improve accuracy on a relatively coarse grid (dx=0.40 m), when comparing
to the first-order method. A decrease in wave height is noticed in Fig. 6.17.
Velocity profiles are less stable, showing spurious deviations from the
theoretical profile near the free surface in Fig. 6.17(a). This local, unphysical
increase in velocity leads to a reduction of dt due to the application of the
CFL stability limit, as observed in Fig. 6.16(a).

For a higher mesh resolution, differences between the different schemes
diminish, see Fig. 6.17(b). It is remarked that in the latter case, resulting
values of time step size for different momentum schemes are very similar,
suggesting that the difference in dt could be a cause for the deviations
observed with dx=0.4 m. This is further explored hereafter.
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Figure 6.16: Impact of iorder on time step size dt, case 2.

Time step control

The previous simulations suggest that deviations in surface elevation and
velocity profiles in the mixed and second-order schemes are associated with a
reduction of dt, resulting from the stability limits applied by the automatic
time step control. In the following, the impact of the time step control
(variable or fixed time step size) and the magnitude of dt are tested with the
first-order upwind scheme. In order to exclude the effect a variable tolerance
in eq. (5.53), the automatic pressure convergence criterion is replaced by a
fixed value of epsi, to be specified in accordance with the maximum expected
dt and below the limit predicted by eq. (5.53). The automatic time step
control is set to autot=2, leaving the resulting dt unaffected by the number
of pressure iterations. In order to investigate the effect of the time step size,
values for dt are estimated from Fig. 6.14. Upper bounds of 0.08 and 0.02 s
are selected for dx respectively 0.4 and 0.10 m, close to the smallest time
step size resulting from the application of stability constraints. Both values
of dt are reduced by a factor 4 in order to check the effect of the magnitude
of dt on the solution.
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Figure 6.17: Impact of iorder on surface elevation η and horizontal velocity
u(z), shown at x=146.5 m, at an instant near the start of the wave train, case 2.

Fig. 6.18 shows the surface elevations and corresponding velocity profiles
under the passage of a crest and trough at x=146.5 m, taken at an instant
corresponding to the start of the wave train. The magnitude of dt clearly
affects the velocity profiles, and to a lesser extent also the surface elevations.
Results seem to deteriorate when dt is reduced, apparently to an increasing
degree with increasing difference between the specified value of dt and the
value resulting from the automatic time step control. This will have an
implication on the operation of the piston wavemaker using the active wave
absorption method, as will be further discussed in section 6.5.

In addition to the effect on the surface elevations and fluid velocities, the
time step size also has an effect on the modeled phase. Tests with different
values of dt show different values of phase lag, to an increasing degree with
increasing distance from the piston. Reducing dt results in an improved
accuracy of the modeled phase.
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Figure 6.18: Impact of time step control and time step size dt on surface elevation
η and horizontal velocity u(z), shown at x=146.5 m, at an instant near the start
of the wave train. Simulations case 2 with iorder=1, alpha=1.
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Selecting the piston sample frequency fs

In this previous section, the rate fs at which piston control velocities are
specified was set to 40 Hz in all cases, except for the smallest cell size
(dx=0.05 m). In fact, it is noticed that the piston time step dtp = f−1s
should be chosen in accordance with the time step size dt resulting from the
application of stability constraints. For instance, when dtp is much larger
than the realized time step, the input signal of the piston control velocities
looks like a step function. Tests with different values of dtp show that this
can affect the surface elevation and particularly the u-velocities, which tend
to show an increase (a drift) in a confined region near the free surface.

Table 6.10 contains time step sizes dt for different combinations of dx
and dtp, computed for test cases 1 and 2. The results in Table 6.10 indicate
that the drift in u-velocity is connected with a relatively large ratio of and
dtp to dt. It is also noticed that the value of dtp has a small impact on the
resulting time step since the latter is being adapted by the automatic time
step control algorithm, in order to properly resolve the movement of the
piston. Using a smaller piston time step dtp generally results in a slightly
larger numerical time step dt.

Fig. 6.19 shows the impact of fs on the surface elevations and velocity
profiles for case 2, computed with different mesh resolutions. For cell sizes
dx=0.2 and 0.1 m, the observed drift in u-velocity vanishes when dtp is
reduced. For the highest mesh resolution (dx=0.05 m) however, it seems
that the drift is very limited, in spite of the large difference between dtp and
dt in case fs=10 Hz. In Fig. 6.19, the deviations in the velocity profile reach
till a depth of about −0.4h, which corresponds with the vertical position
of the single-point velocity measurement in the active wave absorption
procedure. If the disturbance grows beyond this point, it could affect the
performance of the active wave absorption.

Table 6.10: Difference between dtp and realized dt and indication of drift in
u(z), for case 1 and 2.

case 1 (H0 = 0.25 m) case 2 (H0 = 1.0 m)
dx [m] dtp [s] dt [s] drift? dtp [s] dt [s] drift?

0.4 0.10 0.101 no 0.10 0.079 - 0.101 no
0.4 0.025 0.101 no 0.025 0.078 - 0.101 no
0.2 0.10 0.06 - 0.071 no 0.10 0.028 - 0.045 yes
0.2 0.025 0.071 no 0.025 0.045 - 0.065 no
0.1 0.10 0.010 - 0.051 yes 0.10 0.015 - 0.025 yes
0.1 0.025 0.046 - 0.051 no 0.025 0.025 - 0.033 no
0.05 0.10 0.015 - 0.031 yes 0.10 0.010 - 0.015 yes
0.05 0.025 0.028 - 0.032 no 0.01 0.012 - 0.017 no
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Figure 6.19: Impact of fs on surface elevation η and horizontal velocity u(z)
shown at x=146.5 m, at an instant near the start of the wave train. Simulations
case 2 for different cell sizes dx.
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6.3.4 Conclusions
The observations drawn from the simulation of 2D progressive nonbreaking
waves over a horizontal bed lead to the following conclusions and recom-
mendations:

• The test cases show that the minimum mesh resolution required for an
accurate solution of surface elevations and velocities is mainly determined
by the wave height. A minimum ratio H/dx of 0.5 to 1 appears sufficient
when the wave height is relatively small (case 1 and 3). For larger waves,
H/dx needs to be raised (to about 20 for case 2 and 4). The wavelength
has a smaller impact on the required mesh resolution, though a minimum
ratio L/dx about 50 to 100 seems reasonable. Note that uniform cell sizes
dx were used in all simulations. A further optimization with nonuniform
meshes is not undertaken in the present study;

• An accurate modeling of progressive waves can be achieved with the first-
order upwind scheme, which has been shown to yield the most stable
solutions. A comparison with higher-order momentum advection schemes
does not indicate a larger numerical dissipation associated with the first-
order method, even on relatively low mesh resolutions;

• The automatic time step control (autot=1/2) provides the most efficient
solution. A user-specified constant time step much below the implemented
stability constraints can lead to deviations in the velocity profile near the
free surface, and to a minor extent in the surface elevation. The critical
minimum time step associated with the occurrence of a drift in near-
surface velocities depends on the mesh resolution;

• A maximum piston time step dtp should be selected, which should
not largely exceed dt resulting from the automatic time step control.
Otherwise, control velocities behave like a step function which can affect
the results. The sensitivity of the solution to the value of dtp however
is observed to be mesh-dependent, diminishing with increasing mesh
resolution. No specification of a maximum allowable time step size is
needed when the piston operates in single-generation mode (i.e. without
active absorption).
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6.4 Validation : long-duration wave test

2D wave propagation over a horizontal bed was modeled in the previous
section, where zero wave reflection was obtained by constructing a long
wave flume and a relatively short test duration (about 20 wave periods). In
most wave flume studies however, the simulation of long-duration test series
is required, e.g. in tests with irregular waves or tests where certain aspects
of wave-structure interaction take a considerable number of wave cycles in
order to fully establish; e.g. the wave-induced set-up of MWL in permeable
structures.

In the following section, the stability in time of a long series of
piston-generated waves (about 100 wave periods) is investigated. Tests in
section 6.3.3 revealed that results can become unstable when the time step
size is reduced. This is of particular importance, since a reduction of dt is
most likely to occur when waves interact with a structure. The following
tests aim to the investigate the effect of a variable time step size on the long-
term stability of the generated wave train, using the different momentum
discretization schemes available in flow-3d.

6.4.1 Test setup

The simulation of an undisturbed progressive wave field with long duration
in combination with a wave flume of limited length requires an adequate
technique for absorbing the waves. The standard nonreflecting outflow
boundary condition available in the code (a Sommerfeld-type condition)
does not require additional space in the computational domain and therefore
is the most efficient method in terms of computational cost. However, tests
with this boundary condition show unacceptable degrees of reflection in
most cases. Therefore, use is made of a passive absorption technique,
a so-called sponge layer. The sponge is the numerical counterpart of an
absorbing beach applied in a physical wave flume, where flow motions are
gradually dampened out over a gentle slope, reducing the reflection as much
as possible.

Fig. 6.20 presents the setup of the numerical flume, with indication of
the piston and the sponge. In flow-3d, the sponge has been implemented
in the customizable subroutine qsadd.f, by gradually damping the individual
fluid velocity components (u, v, w) over a distance Lsponge toward zero values
at x = xR. The mathematical description of the sponge takes the form of a
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Figure 6.20: Definition sketch of the computational domain for long-duration
wave test.

power function1, which e.g. for the u-velocity reads as:

u∗(xi) = u(xS)

[
1−

(
xi − xR + Lsponge

Lsponge

)ns]
(6.17)

where u∗(xi) and u(xs) are the velocity components at position xi and xs,
respectively (xS ≤ xi ≤ xR). The power ns in eq. (6.17) determines the
shape of the sponge function. Tests with the sponge function eq. (6.17)
indicate a recommended value of ns between 3 and 7. Additionally,
the absorption performance improves with increasing Lsponge. Tests with
varying sponge lengths show that a minimum sponge length of about one
wave length is required to achieve acceptable absorption (i.e. CR<0.20). A
sponge length of about 3L provides optimum results in terms of absorption
capacity and computational cost. For smaller sponge lengths, a smaller
value of ns in eq. (6.17) yields better absorption. For larger values of Lsponge
(> 2L), the value of ns has a limited impact on the absorption performance.

As in section 6.3.3, case 2 will be employed as a reference case in the
following tests. Waves are generated using the piston wavemaker in single-
generation mode. All simulations are performed with dx=0.1 m and fs=40
or 100 Hz (depending on dx and dt). A fixed sponge length of 64.8 m
(≈ 3L) is used, with ns=3. A wave flume with length 108 m (≈ 5L) is
constructed between the initial piston position x0 and the starting point xS
of the sponge.

6.4.2 First-order upwind momentum advection

Tests are run with a constant time step size of 0.3 and 0.15 s, set by
autot=0. A value of 0.3 s closely corresponds to the smallest time step
size resulting from the automatic time step control (autot=2). Fig. 6.21

1Other formulations than eq. (6.17) exist (e.g. elliptic or cosine sponge functions) but
are not tested here.
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shows the resulting surface elevations and velocity profiles at a location
x1 = 100 m, near the end of the wave flume. The reduced time step size
clearly leads to a dissipation of incident wave height, shown in detail in
Fig. 6.21(b). The dissipation increases with time but apparently stabilizes
after about 200 s. The reduction of wave height corresponds with a drift of
u-velocity in Fig. 6.21(d): in the lower half of the cross section, a decrease
of horizontal velocities occurs, whereas an increase is noticed in the upper
half.

It is known that a reduction in time step size increases the numerical
dissipation with the first-order upwind scheme, since the diffusive error εdiff
for e.g. a flow with velocity u in the x-direction is proportional to:

εdiff ∝
(

1− u dt
dx

)
(6.18)

Tests with increasing mesh resolution do not yield significant improvement
in the velocity profile. It is thus unlikely that the increase in velocity
observed in Fig. 6.21(d) is caused by numerical diffusion, since a diffusive
effect should decrease noticeably with increasing mesh resolution. It can
only be concluded that a plausible argument is still lacking at the moment,
explaining for the erroneous behavior of the first-order upwind scheme in
case the time step size is reduced considerably below the stability limit
resulting from the automatic time step control.

6.4.3 Second-order momentum advection
A drawback of the second-order momentum advection is a reduced stability
compared to the upwind scheme, manifesting as spurious velocities near the
free surface. The local increase of velocity causes a reduction of dt, due to
the application of the CFL stability constraint. The following tests with the
second-order schemes are therefore run with autot=2 and the specification
of dtmax.

Fig. 6.22 shows the resulting surface elevations and velocity profiles at x1.
A detailed view on the surface elevations shows that a reduced dtmax leads
to slightly larger wave heights. However, both simulations show excellent
stability in time. The velocity profiles in Fig. 6.22(c,d) remain stable and
agree very well with the theory, except for the spurious velocities near the
free surface.

6.4.4 Second-order monotonicity-preserving momen-
tum advection

Similar tests are performed as with the second-order scheme. Fig. 6.23 shows
that this algorithm does not yield stable results, in spite of the methodology
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applied in the algorithm which aims for enhanced stability.

6.4.5 Impact of spatial discretization
In an attempt to further explore the instable behavior of the first-order
upwind scheme, the influence of the grid is investigated. Therefore, the
simulation with dt=0.015 s, which showed to become unstable, is repeated
with the number of cells ny in transversal direction increased to 2 and 4.

Fig. 6.24 shows the resulting surface elevations and velocity profiles of
both simulations. Small differences are observed between different values
of ny. However, both simulations with ny equal to 2 and 4 do not exhibit
the damping of wave height and drift in fluid velocities, associated with the
time step reduction with ny=1 (Fig. 6.21). This suggests that other factors
than numerical diffusion are causing the instability under a reduction of
time step size.

The slight deviations in the velocity profiles in Fig. 6.24(c,d) are most
probably caused by disturbances in the transversal direction, as shown in
Fig. 6.25. Theoretically, the velocity component v should be zero over the
entire fluid depth for a purely 2D flow. Disturbances in the v-profile are
small, limited to about 5% of the u-profile, but seem to increase with time.

−0.10 −0.05 0.00 0.05 0.10
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

 

 

t =77.8 s
t =378.0 s

z/
h 

[−
]

u [m/s]

(a) crest

−0.10 −0.05 0.00 0.05 0.10
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

 

 

t =79.8 s
t =380.0 s

z/
h 

[−
]

u [m/s]

(b) trough

Figure 6.25: Cross-direction v-velocity profile, shown at x = x1 and half the
cross section width (y=0.2 m). Velocity profiles corresponding with the passage
of (a) crest and (b) trough, corresponding with the start and end of the wave
train. Simulations case 2 with dx=0.1 m, ny=4, iorder=1, alpha=1, autot=2,
dtmax=0.015 s, epsi= 1 ∗ 10−3.
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Figure 6.21: Impact of dt on surface elevations and horizontal velocities, shown
at x = x1. Total time series (a) and close-up (b) of surface elevations for dt=0.03 s
(black solid) and dt=0.015 s (red dashed). Velocity profiles corresponding with the
start and end of the wave train for (c) dt=0.03 s and (d) dt=0.015 s. Simulations
case 2 with dx=0.1 m, iorder=1, alpha=1, autot=0, epsi= 1 ∗ 10−3.
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Figure 6.22: Impact of dt on surface elevations and horizontal velocities, shown
at x = x1. Surface elevations in panel (a) and (b) shown for dtmax=0.015 s (black
solid) and dtmax=0.005 s (red dashed). Velocity profiles corresponding with the
start and end of the wave train for (c) dtmax=0.015 s and (d) dtmax=0.005 s.
Simulations case 2 with dx=0.1 m, iorder=2, autot=2, epsi= 1 ∗ 10−3.
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Figure 6.23: Impact of dt on surface elevations and horizontal velocities, shown
at x = x1. Surface elevations in panel (a) and (b) shown for dtmax=0.015 s (black
solid) and dtmax=0.005 s (red dashed). Velocity profiles corresponding with the
start and end of the wave train for (c) dtmax=0.015 s and (d) dtmax=0.005 s.
Simulations case 2 with dx=0.1 m, iorder=3, autot=2, epsi= 1 ∗ 10−3.
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Figure 6.24: Impact of ny on surface elevations and horizontal velocities, shown
at x = x1. Surface elevations in panel (a) and (b) shown for ny=2 (black solid)
and ny=4 (red dashed). Velocity profiles corresponding with the start and end of
the wave train for (c) ny=2 and (d) ny=4. Simulations case 2 with dx=0.1 m,
iorder=1, alpha=1, autot=2, dtmax=0.015 s, epsi= 1 ∗ 10−3.
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6.4.6 Conclusions
Testing the stability of long-duration wave tests with the first-order upwind
momentum advection shows a considerable decrease of wave height and
nonphysical drift in fluid velocities, in case dt decreases considerably, below
the stability limits specified in section 5.4.6. A plausible reason for this
deficiency is lacking, and simulations with multiple grid cells in the cross
direction suggest that mere numerical diffusion is unlikely to be a cause,
since the drift is not observed in those cases.

Tests with the second-order scheme do not exhibit the instabilities
observed with the first-order upwind scheme. Generally, excellent stability
of surface elevations and velocity profiles is obtained, except for the
occurrence of spurious velocities near the free surface. The second-order
monotonicity-preserving momentum advection scheme yields the poorest
results of all three schemes, showing large instabilities in both surface
elevation and fluid velocity.

6.5 Validation : active wave absorption

6.5.1 Test setup
The operation of the piston wavemaker has been verified for purely
progressive waves, i.e. without compensation for reflected waves. In this
section, the performance of the active wave absorption system is tested by
operating the piston in pure absorption mode. This corresponds to a case
where one would expect maximum (100%) reflection from a structure placed
within the wave flume.

A piston wavemaker is positioned near the right boundary of the
computational domain, with initial position of the left piston face at
x = x0, as depicted in Fig. 6.26. The same test cases as in section 6.3
are used, except case 4. In the latter case, the spatial variability of velocity
profiles due to harmonic generation complicates the proper evaluation of
the absorption performance. The piston near the right boundary operates
in simple-generation mode, i.e. without active wave absorption. The input
control velocity for the generating piston is denoted by uref,2.

Near the left boundary, a piston working in absorbing mode generates
the wave that absorbs the incident wave. The initial position of the right
face of the absorbing piston equals to x = xL. The piston velocity u∗ref,1 is
calculated from the superposition of the filtered velocity signals at location
(x1, z1). The parameters defining the FIR filters are given in Table 6.11.
By due selection of the filter duration, care is taken that the discrete filter
frequencies coincide with the ground frequency of the generated wave train
(i.e. 0.25 and 0.125 Hz). Tests are carried out with different piston sample
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frequencies fs. The filter frequency fsf is always taken equal to fs by
adjusting the number of filter coefficients.

The length of the wave flume between the piston faces is taken as
approximately 5 wavelengths, specified in Table 6.12. With the given flume
length, the time for the waves to reach the absorbing piston is approximately
20 s for cases 1 and 2, compared to 40 s in case 3. Given the filter duration
of 40 s, this implies that the filter is not yet fully operational when the
waves reach the piston in cases 1 and 2. However, the test results show that
this has no significant effect on the performance of the absorbing piston.

Other numerical parameters defining the model setup are adopted from
the basic test setup defined in section 6.3.2. One important exception
concerns the specification of the maximum allowable time step size dtmax.
In the case of simple wave generation, no restrictions to dtmax were needed.
This no longer holds when using the active wave absorption, since it is
then necessary to employ a maximum value of dtmax equal to the piston
time step size dtp = f−1sf . The latter is due to the execution of the filter
convolution is required at regular times steps f−1sf , which is not guaranteed
when dt exceeds dtp = f−1sf . Tests show that the computation becomes
unstable when dt exceeds dtp, leading to excessive fluid motion or even the
abortion of the simulation due to a continued time step reduction caused
by the piston motion.
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Figure 6.26: Set up of the computational domain for test with absorbing piston.

Table 6.11: Absorbing-piston test: specifications of filter design.

dx1 [m] z1 [m] T0f [s] fLC [Hz] fHC [Hz]

case 1,2 30 -1.8 40 0.10 0.75
case 3,4 65 -1.8 40 0.045 0.375

The performance of the absorbing piston is verified in 2 ways. The
first method computes the amount of wave reflection in front of the piston,
which should tend to zero when the left piston is perfectly absorbing the
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Table 6.12: Absorbing piston test: specifications of computational domain.

L[m] x0 [m] xL[m] x1 [m] x2 [m] x3 [m]

case 1,2 21.58 1.6 109.6 79.6 77.44 82.84
case 3,4 50.62 2.0 255.2 190.2 185.14 197.79

incident waves. The reflection coefficient CR(f) is computed with the 3-
gauge-method of Mansard and Funke (1980). Wave gauge locations xi (i =
1..3) are indicated in Table 6.12.

In a second method, the error associated with the absorption of the
incident waves is computed as:

εabs =
uref,2 − u∗ref,1

uref,2
(6.19)

where u∗ref,1 and uref,2 are the mean amplitudes of the control velocities
of the left and right piston, respectively. Under perfect absorption, the
corrected signal u∗ref,1 equals the input control signal uref,2, and εabs reduces
to zero.

6.5.2 Case 1
Simulations are performed with different cell size dx, piston time step dtp
and maximum time step dtmax, summarized in Table 6.13. The results
show that satisfactory absorption of the incident waves (e.g. CR(f)< 0.10
or |εabs| < 0.05) can be achieved already with the largest cell size dx=0.4 m,
in case an appropriate piston time step is selected (dtp=0.025 s). Very little
difference is observed between cell sizes 0.1 and 0.05 m. The solution shown
in Fig. 6.27 for dx=0.05 m demonstrates that waves are almost perfectly
absorbed by the piston.

As it is noticed in the results in Table 6.13, the choice of dtp and dtmax
can have a considerable impact on the performance of the absorbing piston.
The simulations of progressive waves in section 6.3.3 already showed that
reducing dt relatively far below the stability limit size can lead to a drift
in the velocity profile near the free surface, when using the first-order
upwind scheme. The restriction dtmax=dtp may have a similar effect.
The incipient value of dtp causing the drift will depend on the cell size dx.
In Table 6.13, it is indicated whether or not the reduction of dt leads to
a drift in the velocity profile. Except for the largest cell size dx=0.4 m,
this explains why reducing dtp below a certain limit does not improve the
absorption performance.

In addition to the value of dtp, the specification of dtmax can have a
considerable impact on the obtained wave height, provided that the value is
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larger than the critical value which leads to a drift in the velocity profile. In
the tests, dtmax was reduced to half the piston time step size dtp, leading
to a significant increase in Hm,inc and a reduction of reflection for dx=0.1
and 0.05 m. It is noticed that a smaller time step size yields an improved
accuracy of the modeled phase, which can explain the improved absorption
performance in those cases.

Table 6.13: Performance of the absorbing piston, for test case 1.

dx [m] dtp [s] dtmax/dtp dt [s] CR(f) [-] Hm,inc [m] εabs [-] drift?

0.4 0.10 1 0.09 - 0.10 0.28 0.224 +0.11 y
0.4 0.10 1/2 0.05 0.09 0.238 +0.09 n
0.4 0.05 1 0.05 0.11 0.238 +0.05 n
0.4 0.05 1/2 0.025 0.10 0.239 +0.00 n
0.4 0.025 1 0.025 0.08 0.242 +0.02 n
0.4 0.025 1/2 0.0125 0.08 0.241 +0.01 n

0.2 0.10 1 0.08 - 0.10 0.14 0.249 +0.06 n
0.2 0.10 1/2 0.05 0.11 0.250 -0.02 n
0.2 0.05 1 0.05 0.04 0.247 +0.01 n
0.2 0.05 1/2 0.025 0.12 0.257 -0.05 y
0.2 0.025 1 0.025 0.08 0.250 +0.01 y
0.2 0.025 1/2 0.0125 0.13 0.255 -0.02 y

0.1 0.10 1 0.03 - 0.07 0.12 0.231 -0.01 n
0.1 0.10 1/2 0.025 0.08 0.252 -0.02 n
0.1 0.05 1 0.05 0.05 0.241 +0.06 n
0.1 0.05 1/2 0.025 0.03 0.248 +0.00 n
0.1 0.025 1 0.025 0.08 0.234 +0.06 n
0.1 0.025 1/2 0.0125 0.13 0.249 +0.01 y

0.05 0.10 1/2 0.020 - 0.05 0.07 0.229 +0.03 n
0.05 0.05 1 0.025 - 0.05 0.06 0.229 +0.03 n
0.05 0.05 1/2 0.025 0.02 0.247 -0.02 n
0.05 0.025 1 0.023 - 0.025 0.13 0.221 +0.10 n
0.05 0.025 1/2 0.0125 0.07 0.237 +0.02 n
0.05 0.01 1 0.01 0.18 0.217 +0.11 y
0.05 0.01 1/2 0.005 0.08 0.248 +0.02 y
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Figure 6.27: Performance of the absorbing piston: (a) time series of surface
elevation at x = x1; (b) profile of u(z) at x = x1; and (c) time series of
piston control velocities. Simulation case 1 with dx = 0.05 m, dtp = 0.05 s
and dtmax=dtp/2.
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Figure 6.28: Performance of the absorbing piston: (a) time series of surface
elevation at x = x1; (b) profile of u(z) at x = x1; and (c) time series of piston
control velocities. Simulation case 2 with dx = 0.10 m, dtp = 0.025 s and
dtmax=dtp.
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6.5.3 Case 2

Table 6.14 shows the simulation results obtained with different values
of dx, dtp and dtmax. As can be expected, the performance of the
absorption piston deteriorates with increasing wave nonlinearity. In
optimum conditions, the reflection by the piston can be reduced to
approximately 0.20, which is significantly higher than in case 1. The best
solution is shown in Fig. 6.28. In the time series of surface elevation in
Fig. 6.28(a), the various re-reflections at the generating piston are visible.
The stability of surface elevations and velocity profiles in time is not as good
as in case 1, but the piston is capable of preventing the simulation to become
fully instable due to repeated reflection. Again, it is noticed that selecting
a proper value for dtp and dtmax can improve the absorbing performance,
as long as a drift of fluid velocities is avoided.

Table 6.14: Performance of the absorbing piston, for test case 2.

dx [m] dtp [s] dtmax/dtp dt [s] CR(f) [-] Hm,inc [m] εabs [-] drift?

0.2 0.10 1/2 0.028 - 0.050 0.28 1.043 -0.05 n
0.2 0.05 1 0.015 - 0.050 0.26 1.038 -0.08 n
0.2 0.05 1/2 0.025 0.37 1.049 -0.10 y
0.2 0.025 1 0.015-0.025 0.37 1.038 -0.07 y

0.1 0.10 1/2 0.015 - 0.050 0.30 1.064 -0.11 n
0.1 0.10 1/4 0.015 - 0.025 0.27 1.061 -0.12 n
0.1 0.05 1 0.008 - 0.050 0.32 1.037 -0.10 n
0.1 0.05 1/2 0.012 - 0.025 0.24 1.033 -0.09 n
0.1 0.025 1 0.009 - 0.025 0.20 1.036 -0.02 n
0.1 0.025 1/2 0.010 - 0.0125 0.33 1.090 -0.15 y

0.05 0.10 1 0.008 - 0.036 0.24 1.136 +0.01 n
0.05 0.05 1 0.006 - 0.036 0.24 1.072 -0.12 n
0.05 0.025 1 0.005 - 0.025 0.17 1.065 -0.07 n
0.05 0.025 1/2 0.008 - 0.0125 0.17 1.066 -0.05 n
0.05 0.010 1 0.008 - 0.010 0.17 1.053 -0.08 n
0.05 0.010 1/2 0.004 - 0.005 0.31 1.098 -0.15 y

6.5.4 Case 3

Table 6.15 shows the simulation results obtained with different values of
dx, dtp and dtmax. In optimum conditions, the obtained wave reflection
varies between 0.15-0.20, which is considerably larger than in case 1. An
optimal solution is shown in Fig. 6.29. As in case 1 and 2, reducing dtmax
improves the absorbing performance in most cases, as long as a drift in the
velocity profile is avoided.
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Table 6.15: Performance of the absorbing piston, for test case 3.

dx [m] dtp [s] dtmax/dtp dt [s] CR(f) [-] Hm,inc [m] εabs [-] drift?

0.4 0.10 1 0.10 0.16 0.258 -0.00 n
0.4 0.10 1/2 0.05 0.15 0.261 -0.02 n
0.4 0.05 1 0.05 0.15 0.263 -0.01 n
0.4 0.05 1/2 0.025 0.15 0.263 -0.01 n
0.4 0.025 1 0.025 0.15 0.262 -0.01 n
0.4 0.025 1/2 0.0125 0.14 0.265 -0.02 n

0.2 0.10 1 0.081-0.10 0.16 0.261 +0.00 n
0.2 0.10 1/2 0.05 0.15 0.260 +0.01 n
0.2 0.05 1 0.05 0.19 0.234 +0.10 n
0.2 0.05 1/2 0.025 0.18 0.243 +0.07 y

0.1 0.10 1 0.045 - 0.071 0.16 0.253 +0.05 n
0.1 0.10 1/2 0.047 - 0.05 0.17 0.260 +0.02 n
0.1 0.05 1 0.043 - 0.05 0.22 0.224 +0.13 n
0.1 0.05 1/2 0.025 0.20 0.233 +0.11 n
0.1 0.025 1 0.024 - 0.025 0.27 0.200 +0.21 n
0.1 0.025 1/2 0.0125 0.20 0.240 +0.08 y

0.05 0.10 1 0.023 - 0.051 0.17 0.240 +0.09 n
0.05 0.10 1/4 0.022 - 0.025 0.19 0.250 +0.05 n
0.05 0.05 1 0.024 - 0.05 0.22 0.215 +0.19 n
0.05 0.05 1/2 0.025 0.22 0.211 +0.19 n
0.05 0.025 1 0.025 0.33 0.182 +0.26 n
0.05 0.025 1/2 0.0125 0.31 0.192 +0.23 n

6.5.5 Optimal time step control

As in the case of purely progressive waves, dtp = f−1sf should be selected
in accordance with the mesh resolution. An important difference however
concerns the specification of dtmax, which needs to be restricted to dtp.
The previous test cases lead to the following considerations that should be
taken into account when specifying dtp and dtmax:

1. A maximum piston time step size dtp in order to limit the difference
between dtp and dt set by the automatic time step control. This avoids
the piston control velocities to look like a ‘step’ signal;

2. A minimum dtp because of the occurrence of drift of the fluid velocities
near the free surface;

3. The stability of velocity profiles and absorption performance improves
when the ratio of dt to dtp decreases. This can be achieved by reducing
dtmax, however not below the limit which would lead to a drift in the
velocity profile.
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Figure 6.29: Performance of the absorbing piston: (a) time series of surface
elevation at x = x1; (b) profile of u(z) at x = x1; and (c) time series of
piston control velocities. Simulation case 3 with dx = 0.05 m, dtp = 0.10 s
and dtmax=dtp/4.
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6.6 Conclusions

A first-order piston wavemaker with active wave absorption has been
implemented in flow-3d, using the GMO model to represent the piston
motion. The operation of the piston has been tested based on a selected
number of wave conditions, with varying wave nonlinearity. A basic grid
convergence study with purely progressive waves shows that a stable and
accurate wave generation and propagation can be achieved with the first-
order upwind momentum advection (iorder=1, alpha=1). The accuracy
of the solution may vary significantly according to the time step control
and specification of the piston time step dtp. Guidelines to select these
numerical parameters are included in section 6.3.

Additional long-duration test series were performed to verify the stability
of the wave train in time. The first-order upwind scheme proves to be stable,
provided the time step size is not reduced below the lower stability limit
set by the automatic time step control (autot=1/2). This might be an
issue when modeling wave-structure interaction, where a reduction of dt
cannot be avoided. A satisfactory explanation for the occurrence of a drift
in the velocity profile under these circumstances is lacking to date. Results
obtained with an increased number of grid cells in the transverse direction
do not show the deviations associated with the time step reduction. In
addition, tests with the second-order scheme do not exhibit the instabilities
observed with the first-order upwind scheme. The previous considerations
suggest that the cause of this problem may be found in the numerical
implementation.

Finally, the performance of the linear active wave absorption system has
been validated by means of a piston wavemaker in pure absorption mode,
for short and long waves with varying wave height. Results show excellent
absorption capacity for low-amplitude waves and a lower performance with
larger wave heights, although still acceptable. Notwithstanding the active
absorption is clearly bound by the limitations of the linear wave absorption
system, it seems that its performance is as least as high as in a physical
wave flume.


