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Abstract 

In recent years, several studies have attempted to produce scaffolds with various structural 

properties using micro-fabrication techniques based on Rapid Prototyping (RP) methods. The 

first step in this research is the fabrication of bio-applicable three-dimensional (3D) structures to 

tissue engineering scaffolds. The developed process, namely direct polymer melt deposition 

(DPMD) process, employs a micropositioning system equipped with a pressure-activated micro 

syringe and heating module for extruding and depositing the polymer melts. Through this 

process, highly-controllable regular 3D structures can be successfully manufactured. Under 

various process conditions including temperature, pneumatic pressure and moving velocity of a 

nozzle, the controllability of the developed 3D structures was verified. The resultant scaffold can 

satisfy the requirements of structural properties such as macroscopic external shapes, internal 

architectures, porosity and pore size. For the practical and bio-functional applications to tissue 

engineering, surface modification with bioactive agents was performed so that the limited 

properties for cell adhesion due to smooth surface and hydrophobicity of the developed scaffold 

can be overcome.  

On the other hand, some researchers have recognized the importance of nano-structured 

architecture in view of biological applications; thus, they have aimed to produce functionalized 

scaffolds that can mimic the nanofibrous structure of the natural extracellular matrix (ECM) and 

tried to fabricate various nano- and micro- scaled structures to enhance cell activation. 

Meanwhile, the current interest in the electrospinning methods has been concentrated on other 

forms of nanofibers, especially uniaxially oriented arrays of nanofibers, in order to expand their 

tissue engineering applications. For the fabrication of nanostructured scaffolds, the general 
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electrospinning method and the proposed fiber alignment technique are employed. Especially, as 

the inclined gap method and the repetitive transfer of nanofibers are introduced, the uniaxially 

aligned fiber array can be quantitatively controlled with its density. As well as the controllability, 

the proposed alignment technique provides favourable properties such as enhanced orientation 

and regular distribution.  

For a synergistic advantage from the both techniques, a nano- and micro- hybrid process 

incorporating DPMD and electrospinning process was developed. It can be successfully applied 

to produce highly functionalized three-dimensional scaffolds with an open porous network, a 

controllable shape, and a controllable nanofiber architecture. The main advantage of this hybrid 

scaffold over the other scaffolds is its three-dimensional characteristics simulated as a 3D fibrous 

extracellular environment. These technical results were achieved by alternative layer-by-layer 

deposition of random or aligned nanofibers and microfibers using electrospinning and DPMD 

process. Specifically, the RP method was used in conjunction with the functional and controllable 

electrospinning process in an effort to realize a 3D fashioned ECM-like structure. To verify the 

validity of the developed scaffolds from the viewpoint of tissue engineering application, various 

types of cell lines were seeded and cultured within these scaffolds. Cell viability, morphology, 

and differentiation in the scaffolds were determined as a function of time. The results imply that 

the proposed hybrid scaffold provides more preferable 3D biomimetic structure and many 

potential applications for the regeneration of various tissues. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Overview of tissue engineering 

Tissue engineering was born of the necessity to treat the defect or loss of an organ or 

tissue in health care. The need to replace or repair damaged bone, cartilage, skin, muscle and 

even nervous tissue is deriving multi-disciplinary technologies of biology, material sciences, and 

engineering. Currently, practical approaches for tissue replacement largely depend on autografts, 

allografts, or metallic devices. Although these methods are effective for clinical applications, 

there are some limitations including shortage of donors, ability to maintain the organ’s proper 

functionality, and potential immune rejection problem. In order to overcome these limitations, 

the strategies for creating new tissue have been focused in the tissue engineering field.  

One of the effective strategies is cellular therapy that involves injection or transplantation of 

cells. For example, one such cell-based procedure is autologous chondrocyte transplantation 

(ACT) for cartilage repair that involves isolation of chondrocytes from the patient, proliferation of 

the cells in vitro, and transplantation of the cells back into the patient body [1, 2]. Furthermore, 

in the past decade, the cell therapy has advanced considerably using stem cells, which are 

undifferentiated cells with the capacity for unlimited or prolonged self-renewal and the ability to 

give rise to differentiated cells. However, if the loss of tissue is a large volume or requires a 

physical and mechanical support, the infusion of the cells alone would have a limitation. 
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As well as the cell-based therapy, the application of cell-scaffold composite also has 

achieved some noteworthy results in tissue regeneration strategies. Whereas cell therapy uses 

cells alone, the scaffold-based method employs a three or two dimensional matrix on or within 

which cells are cultured. The cells seeded in the scaffold can proliferate and migrate, produce 

extracellular matrix (ECM), and form a functional tissue with a desired shape along the scaffold 

geometry. The scaffold also has many advantages in that it provides structural support during 

tissue formation and allows incorporation with biological and mechanical factors to enhance 

tissue regeneration.  

Therefore, many researchers have given much attention to fabricate and apply the 3D 

scaffolds to the tissue engineering field. According to development of various biomaterials with 

biodegradability and biocompatibility, the importance of 3D scaffold application has been 

emphasized. Although it is not yet clear what defines a so-called ‘ideal scaffold’, recent 

advancement in micro/nano fabrication technologies has played a key role in the scaffold-based 

approach. Typically, the scaffold fabrication should satisfy at least a set of minimum biochemical 

and physical requirements as follows [3] (Figure 1-1).  

 Mechanical integrity to tissues by acting as a support for neo-tissue growth. 

 Guidance for biological response through the promotion of the dynamic 

interaction with surrounding tissues. 

 A space for host cell survival, enhancing the transport of nutrients and 

metabolites through. 

 Maximization of biological and/or pharmaceutical response. 

 Adequate biocompatibility/biodegradability, with degradation kinetics suitable to 

match neo-tissue formation, thus minimizing toxicity in terms of both tissue and 

systemic response. 

 Manufacturing feasibility. 
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Figure 1-1. Key components for tissue engineering scaffold. 

 

In these regards, the selection of the scaffold material is a crucial factor from the viewpoints 

of both the fabrication and the cell interaction. Table 1-1 lists the several options of the available 

polymers. The naturally-derived polymers such as collagen and hyaluronic acid hydrogel, despite 

of their poor mechanical property, have been useful for regeneration of soft tissues in that they 

do not induce a host immune response and encourage the cellular functions [4]. In order to 

widen their tissue engineering applications, many efforts are under way by incorporating with 

other synthetic materials for a mechanical support. 

The synthetic organic polymers provide not only the desirable mechanical property but also 

biodegradability which is very advantageous for the applications such as medical sutures, drug 

delivery devices, scaffolds, vascular grafts and stents, artificial skin, orthopedic implants, and 

others. It is generally easy to be processed into porous structures as the scaffolds. The synthetic 

polymers can be chosen and tailored for a specific application based on their physical and 

chemical properties.  
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Table 1-1. Biocompatible polymers for tissue engineering scaffolds. 

 

Using these biomaterials, several fabrication techniques have been tried to create the bio-

activated scaffolds with 3D geometry and pore network. To date, potential fabrication methods 

include solid freeform fabrication methods, electrospinning, conventional methods such as 

solvent casting, fiber bonding, phase separation, particulate leaching and gas foaming. Recent 

advancements in scaffold fabrication are further discussed in this chapter. 

 

 

1.2 Scaffold-based approaches 

1.2.1 Conventional methods 

The realization of a porous structure is regarded as a central goal of scaffold fabrication and 

various techniques have been developed accomplish this aim as listed in Table 1-2. Though the 

listed techniques have some limitations for controllability of geometry and full interconnectivity, 
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they are still used in various ways due to the relative ease of processing the scaffolds. 

 

 

Table 1-2. Conventional processing techniques for tissue engineering scaffolds [5].  

 

Fiber bonding method is one of the earliest techniques to produce porous scaffolds with 

interconnected pores. The method employs two different mechanisms to attach fibers each other. 

One thing is firstly developed by Mikos et al [6]. After PGA fibers are immersed in a PLLA 

solution, the composite of PGA fibers embedded in PLLA is obtained by solvent evaporation.  

When the composite is heated to above the melting point of both polymers, the PLLA is molten 
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out and the PGA fibers is welded at the cross-points. The other method for bonding PGA fibers is 

atomization of PLLA solution [7]. When the PLLA solution is sprayed onto the PGA fibers, the 

fibers are coated with the solution and bonded each other as the solvent evaporates. 

Solvent casting or particulate leaching create the porous structures by use of a water-

soluble porogen such as salt particle [8]. After PLLA or PLGA polymer dissolved in chloroform or 

methylene chloride is cast with the porogen, the polymer/salt composite is obtained as the 

solvent evaporates. Then, the composite is leached in water to remove the salt particle. The 

resultant scaffold provides a favorable condition in that the porosity can be controlled by the size 

or amount of the added salt.  

Gas foaming method has an advantage of solvent-free process [9]. The organic solvent 

used in the normal processes can be harmful to cells and tissues. The technique employs gas as 

a porogen. In the first step, solid discs of PGA, PLLA or PLGA is processed using compression 

molding. The discs are placed in a chamber and exposed to CO2 gas of high pressure for several 

days. When the pressure is rapidly decreased down to atmospheric pressure, the highly porous 

structure can be obtained. 

Freeze drying is based on the concepts of thermodynamic mechanism rather than use of the 

porogen [10]. PLGA solution is mixed with distilled water to form an emulsion. As casted and 

quenched by liquid nitrogen, the mixture of PLGA and water is freeze-dried. Through this 

method, scaffolds with high porosities (up to 95%) and small pore sizes (13-35 m) can be 

obtained.  

Although these techniques are able to form the porous foams with ease, they have several 

limitations from the viewpoint of controllability. The importance of pore geometry in the ability of 

cells to adhere, proliferate, and differentiate has been emphasized in the scaffold design and 

fabrication through the numerous studies. With regard to this point, the above conventional 

methods have the lack of precise control of scaffold specifications such as pore size, distribution, 
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interconnectivity, and overall shape of the scaffold. The irregularity of the pore network is 

revealed in Figure 1-2 as an example of conventional scaffold by freeze drying.  

 

 

Figure 1-2. Scaffold produced by conventional freeze drying method. 

 

1.2.2 Solid freeform fabrication methods 

In recent years, several studies have attempted to produce 3D scaffolds with controllable 

structural properties based on rapid prototyping (RP) methods or solid freeform fabrication (SFF) 

methods. RP techniques are a set of fabrication processes that can produce the predefined and 

precisely controlled constructs in accordance with computer-aided design (CAD) modeling data. 

As factors influencing the procedures of scaffold-based tissue engineering are very complex and 

not yet defined in every specific case, RP methods that can provide arbitrary and complex 

fabrication are regarded as advantageous and effective process for the scaffold fabrication. Basic 

considerations for 3D scaffold fabrication include pore size, total porosity, pore interconnectivity, 
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mechanical and surface properties. These are relevant to the critical factors of the scaffold-based 

approach, such as effective nutrient and oxygen supply, metabolic waste removal, and cellular 

signaling [11, 12].  

 

 

Figure 1-3. Schematics of possible RP systems for scaffold fabrication. (a) Stereolithography 

system using laser based processing technique and liquid photopolymer, (b) Fused deposition 

modeling using thin filament of thermoplastic polymer and heated nozzle, (c) 3D printing using 

fine powder and chemical binder, (d) selective laser sintering using laser exposure and sintering 

powder [13]. 

 

Recent works with scaffolds produced by RP methods can fulfill the basic requirements for 
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3D scaffold applications, while the conventional methods have the uncontrollable variation in the 

pore size and geometry. Furthermore, the RP techniques allow the reproducible manufacturing 

of scaffolds along a computer-aided design (CAD) data. The feature of the CAD-based 

fabrication opens up the possibility for patient-tailored scaffolds based on computer tomography 

(CT) or magnetic resonance imaging (MRI) data [14, 15]. The RP systems for the scaffold 

fabrication are categorized by the processing technique as illustrated in Figure 1-3. 

Stereolithography (SLA) provides a precise 3D object via light-mediated curing process of 

liquid photopolymer. Since the apparatus was commercialized by 3D Systems Inc. 

(www.3dsystems.com) in 1988, the process has been recently applied to the tissue engineering 

field. When the surface of liquid photocurable polymer is exposed to the UV laser with its beam 

path based on CAD data, the polymerization is initiated along the beam path. As this laser 

polymerization process is repeated by raising or lowering the object platform, the 3D object can 

be created in a layer-by-layer manner. The resolution of a typical SLA is dependent on the 

resolution of the unit layer thickness (up to 1.3 m) and laser spot size (80-250 m) [16]. For 

tissue engineering applications, biocompatible photopolymers was developed such as   

poly(propylene fumarate) [17, 18] and acrylated poly(ethylene glycol) [19, 20], and used as the 

scaffold materials of stereolithogaphy. Based on recent advances in the precision of the process, 

micro stereolithography (SL) with micrometer resolution has provided the improved potential 

for the fabrication of 3D scaffolds [21, 22]. 

Fused deposition modeling (FDM) process uses the pre-formed polymer filaments and the 

heated nozzle attached to a moving table in the horizontal stage. While extruded through the 

nozzle, the liquefied polymer is deposited as a layer shaped along the nozzle movement. Then, 

the stage is lowered and the following layer is newly deposited. As the lamination process is 

repeated, the 3D structure can be fabricated. When this method is applied to the scaffold 

fabrication, the perfectly non-toxic scaffold without the organic solvent can be obtained. The 
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process has been used to produce the scaffold from various thermoplastic polymers and their 

composites such as PCL, PEG-PCL-PLA, and PCL/hydroxylapatite (HA) composite [23-25]. 

Moreover, this extrusion-based process can be applied to different methods by changing its 

material and extruding mechanism. One such technique, 3D bioplotting, involves the reactive 

processing of aliphatic polyrurethanes based on lysine ethyl ester diisocyanate and isophorone 

diisocyanate [26].  

3D printing (3DP) is a process whereby PLA powders is bonded together using ink-jet 

printer to spray the surface of powder bed with a binder [27]. The printing process is repeated 

on top of the previous layer, and 3D object can be obtained. In the typical process, the organic 

solvents used as binders can be replaced by biocompatible materials. As an example, 

hydroxyapatite (HA) powder was used to fabricate bone scaffolds employing a binder composed 

of polyacrylic acid dissolved in a water-glycerol mixture [28].  

Similar to 3D printing, selective laser sintering (SLS) also uses powders, which is sintered 

together by a laser beam along the beam path. As the powder materials, some biodegradable 

polymers have been used to fabricate scaffolds such as polyetheretherketone, poly (vinyl 

alcohol), polycaprolactone, and poly (L-Lactic acid) [29-31]. 

In summary, the recent works with scaffolds fabricated using SFF techniques have provided 

the controllable scaffold geometry eliminating the variability of structural features such as the 

pore size and interconnectivity. These techniques are expected as promising technologies for 

fabrication of the patient-specific and clinically practical scaffolds. 

    

1.2.3 Electrospinning methods 

Some researchers have recognized the importance of nanostructured architecture in view of 

biological applications. Thus, they have aimed to produce functionalized scaffolds that can mimic 
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the nanofibrous structure of the natural extracellalar matrix (ECM) and tried to fabricate various 

nano and microscaled structures to enhance cell activation. ECM is a complex structural entity 

surrounding and supporting cells that are found within mammalian tissues (Figure 1-4).  

 

 

Figure 1-4. Extracellular matrix (ECM) [32].  

 

It is mainly composed of proteoglycan hydrogels resisting compression force and various 

protein fibrils and fibers providing high tensile strength, such as collagen, elastin, fibronectin and 

laminin [33]. Since it was stated that a tissue provides a specific function in part through 

interactions of the cells with the ECM [34], much attention has been given to the fabrication of 

ECM-mimicking scaffold. Since the early 2000s, the electrospinning process has been held as a 
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highly promising technology producing nanofibers as thin as several nanometers which can be 

used as substitutes for the natural ECM structure.  

 

 

Figure 1-5. Schematic diagram of electrospinning process during which a drop of a polymer 

solution is ejected from the micro nozzle and spread onto a grounded substrate in the shape of a 

nanofibrous matrix. 

 

The electrospinning method is different from the aforementioned SFF techniques in that it 

provides a nanofibrous scaffold. Such a nanoscaled architecture possesses high aspect ratio, 

high porosity, high surface area, low density, and small pore size so that it mimics the ECM 

structure. In this process, high direct-current (DC) voltage in the kilovolt range is applied to a 

polymer solution held in a metal needle. A polymer drop from the needle tip is deformed into a 

Taylor cone due to the repulsive electrostatic force that overcomes the surface tension of the 
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polymer solution, and a charged jet aof the solution is then ejected from the tip of the Taylor 

cone. As the jet undergoes a stretching process and moves toward a grounded target (collector), 

it is accompanied by solvent evaporation, which results in nanofiber mats forming on the 

collector.  

 

 

Table 1-3. Biodegradable polymers that are used to develop electrospun nanofibers. 

 

Additionally, more functions of electrospun nanofibers have been added by some methods 

including mixing bioactive agents or polymers with the spinning solutions and surface 

modification of the scaffold [35]. And combinations of synthetic and natural polymers provided 
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mechanically stronger structure and preferred surfaces for cell attachment. Table 1-3 shows the 

spinnable materials for the scaffolds including synthetic polymers, natural-derived polymers, and 

their blends [36]. 

Numerous studies have been conducted about nano-structured scaffold, which is believed to 

enhance cellular activity such as cell migration, growth, proliferation, and differentiation. Thus, 

much potential of the utilization of electrospun nanofibers is implied in tissue engineering 

applications. Various types of cells have been used with electrospun nanofiber scaffolds including 

chondrocytes [37], fibroblasts [35, 38], myoblasts [39], smoothe muscle cells [40], osteoblasts 

[41], and etc. So far, the electrospun nanofiber scaffolds have been applied to many different 

types of tissues such as blood vessel, cartilage, bone, muscle, and nerve. 

Because of the inherent characteristic of the electrospinning process, the formed nanofibers 

are deposited with randomly oriented configuration. Recent electrospinning techniques have 

focused on uniaxial alignment of nanofibers. The ability to obtain the aligned fiber structures led 

to the specific applications where cells or tissues should be organized with the oriented 

configuration. For example, skeletal muscle tissue is composed of bundles of highly oriented 

muscle fibers and cells [42]. Along the several works, the aligned nanofiber scaffolds are 

expected to have potential for blood vessels [43], neural tissue [44], muscle tissue [42], and 

ligament tissue [45]. Moreover, cell adhesion and proliferation are significantly enhanced on the 

aligned nanofiber scaffolds [43]. Consequently, the fabrication of aligned nanofiber scaffold plays 

an important role in the specific parts of tissue engineering applications. 

Several approaches have been proposed for fabricating aligned nanofibers. Firstly, a rotating 

mandrel was used as a ground target with controlling the rotation speed of the mandrel [46, 47]. 

This technique is a simple method to collect the aligned fibers along the circumference of the 

target mandrel. Instead of the simple mandrel, some researchers tried to improve the 

orderliness of electrospun fibers employing other rotating objects such as a spaced wire drum 
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[48]. As it rotated aligned nanofiber sheets were collected on the drum. By aid of convergence 

of electrostatic fields, A rotatable disk collector which has a knife-edge can be used [49]. As the 

electrospun jets travel toward the disk, the jets tend to converge onto the knife-edge and are 

wound along the knife-edge of the rotating disk. While previous mentioned methods are based 

on employment of a mechanically rotatable collector, the aligned nanofibers can be fabricated 

purely through a design of an electrostatic field between the needle and the collector [50, 51]. 

When two pieces of parallel conductive electrodes are placed with a gap, the electric field lines 

near the electrodes are split into each edge of the parallel electrodes. Thus electrospun jets are 

stretched and aligned across the gap due to influence of the electrostatic field profile. On the 

other hand, an alternating-current (AC) high voltage supply can be used for the fiber alignment 

instead of the typically used direct-current (DC) voltage [52]. The use of AC potential was shown 

to reduce the chaotic path of the electrospun jets, and minimize accumulation of the residual 

charges on the jets. Table 1-4 summarizes the aforementioned alignment techniques including 

their features and limitations. 
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Table 1-4. Several electrospinning setups to obtain oriented fiber arrays. 

 

 

1.3 Objective and scope of the study 

To date, large amount of efforts in scaffold-based tissue engineering have been devoted to 

fabrication of 3D scaffolds optimized to specific tissue or cell on a case-by-case basis. Potential 

fabrication methods of such scaffolds have been developed as has been mentioned including the 

conventional methods, RP processes, electrospinning, and nanolithographic methods. Among 

them, RP and electrospinning processes are expected to be the most promising. The rapid 

prototyping methods allow precisely tuning such factors as the pore network and geometry in a 

CAD/CAM manner. And the electrospinning process allows producing cyto-compatible 

nanofibrous architectures which mimic the natural ECM environments. Although both techniques 

have shown favorable outcomes and potential applications in separate fields, the fabrication 

methods have some limitations when they are applied alone. Typical RP scaffold has relatively 
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large pores and features of several hundred micrometers, which is much larger than the cell 

scale. Despite of its 3D applicability, the limitation of large scale could be an obstacle to cell 

attachment and induction of other cellular activities such as migration, proliferation and 

differentiation. On the other hand, such cellular behaviors can be greatly enhanced by the 

application of electrospun nanofibers. However, it is considered difficult to obtain 3D macro-scale 

scaffolds for the practical use. Furthermore, the relatively small pores of the electrospun 

nanofiber scaffolds compared to the cell size may cause poor conditions including nutrient supply, 

metabolic waste removal, and cell migration within the scaffolds. 

In these regards, the main objective of this thesis is to develop a new conceptual 

integration process for novel 3D scaffolds mimicking the biophysical environment. The 

integration process consists of two-step alternating process including direct polymer melt 

deposition (DPMD) process and electrospinning. The developed scaffold is characterized by a 

micro/nano dual-scale hierarchical structure in a form of 3D construct incorporating the 

electrospun nanofibers. This newly integrated scaffold overcomes the limitations caused by 

application of either RP or electrospinning. As two methods are merged together, the integrated 

process provides both the 3D applicability and the improved cell activation.  

In Chapter II, the characteristics and biomedical applications of the DPMD process are 

described. In order to implement 3D architecture for the tissue engineering scaffolds, the DPMD 

apparatus is integrated. The DPMD process employs fine-bore nozzle for micro-extrusion, syringe 

barrel with heating device, pressure controller with air compressor, and 3D moving 

micropositioning system. Through extrusion of molten material along a CAD-based nozzle path, 

the 3D scaffolds can be fabricated considering pore size, porosity, and overall shape. As well as 

the 3D hybrid scaffold in the following chapter, some applications using the DPMD process alone 

are addressed in this chapter. 

Chapter III describes fabrication of electrospun nanofibers as a constituent of the 3D 
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hierarchical scaffold. The available electrospun nanofibers for the scaffold are classified by their 

configuration such as randomly oriented mesh and uniaxially aligned array. The random 

nanofiber mats are obtained by fundamental electrospinning apparatus under appropriate 

combination of process parameters. On the other hand, uniaxially electrospun nanofiber arrays 

are built by introducing a newly designed collector, which is characterized as an inclined gap 

alignment technique. For this method, adequate process conditions should be derived including 

solution concentration and spinning distance from needle to collector. As the method allows 

transfer onto another substrate, the use of the resultant aligned fibers can be diversified. 

In Chapter IV, the characteristics of the controlled nanofiber mats and cell guidance 

phenomena on the nanotopography are described. The uniaxially electrospun nanofiber arrays 

were constructed with quantitatively controlled density. As a single transfer of the nanofibers 

collected from the inclined gap provided a well-aligned and regularly-distributed form, the 

developed nanofiber array could be applied to tissue scaffold by employing multiple transfers. 

The fiber density within a scaffold could be controlled in proportion to the number of transfers. 

Diameters of the nanofibers in the scaffold lay in a sub-micrometer range, which means that the 

fibers were appropriate to utilize as nano-topographic features. In regard to the contact 

guidance along the aligned direction of the nanofibers, favorable interactions between the 

fibroblasts and the developed scaffold, especially in a highly dense scaffold with the fiber 

spacing reduced down to less than cell size, were revealed in observation of cell morphologies.  

Chapter V deals with the implementation of dual-scale hierarchical structures by 

incorporation of electrospinning and the DPMD process. A hybrid process for fabrication of 3D 

scaffolds which consisted of a microfibrous woodpile structure fabricated using the DPMD and 

nanofibrous matrices by an electrospinning method was tried. Insertion of the nanofiber mats 

between the layers of 3D structure causes different conditions in the thermally self-bonding 

procedure from the case using DPMD alone. This chapter focuses on the characterization of the 
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thermal fusion process between the nanofiber mat and the deposited microfiber so that it is 

feasible to fabricate the dual-scale hierarchical scaffold using both electrospinning and the DPMD 

process. 

Chapter VI shows the various applications for 3D-fasioned tissue formation using the 

developed fabrication methods. The outcome from the developed fabrication method shows 

more preferable 3D biomimetic structure and many potential applications using various cell lines, 

such as chondrocyte, mesenchimal stem cell (MSCs), and myoblast. As the random nanofiber 

meshes composed of collagen and PCL are inserted within the 3D scaffold, the scaffolds can 

provide a 3D structure to support tissue ingrowth as well as functionality related to surface 

affinity and an additional surface area for improved chondrocyte attachment and proliferation. 

Also from not only the random mesh but also the aligned fiber array, the improved cell activation 

was confirmed by employing MSCs culture experiments. For a prolonged application, a parallel 

layer-by-layer approach for 3D cell/fiber integration is introduced to enlarge the application of 

electrospun nanofiber structure to 3D muscle tissue engineering. 
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CHAPTER II  

DIRECT POLYMER MELT DEPOSITION (DPMD) 

PROCESS 

 

 

2.1 Introductory remarks 

In recent tissue engineering strategies, most researchers have focused on scaffold-based 

techniques for successful regeneration of tissues or organs by cell adhesion, proliferation and 

differentiation in three-dimensional porous scaffolds [53]. There are some structural factors that 

should be considered in constructing the scaffolds besides material issues. Such factors have 

influence on cell attachment, survival, growth and reorganization as well as on the overall 

behaviour of tissue regeneration. As for design of scaffolds, the following characteristics should 

be provided: (i) a three-dimensional macro structure to replace a damaged tissue; (ii) a highly 

micro-porous structure with pore interconnectivity to support and culture tissue cells within it; (iii) 

optimal pore size for each application of tissues; (iv) bio-compatible and bio-degradable 

structure in vivo; (v) large surface area and suitable surface chemistry to improve cell 

attachment and migration within the structure; (vi) mechanical properties to support the region 

of implantation [5].  

Due to limits of shape controllability and repeatability in the previously-stated conventional 

approaches, solid freeform fabrication (SFF) based fabrication methods have been introduced to 

manufacture tissue engineering scaffolds. These SFF based approaches hold considerable 
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promise as tissue regeneration strategies, especially in terms of morphological controllability. SFF 

techniques are based on CAD systems so that a precisely controlled outer shape and pore 

network can be realized. SFF techniques, also known as rapid prototyping (RP) techniques, have 

some significant advantages including customized design via CAD models, computer-controlled 

fabrication, anisotrophic scaffold microstructures and a diverse range of processing conditions. 

Currently possible SFF techniques adapted for fabricating tissue engineering scaffolds are Three-

dimensional printing (3D-P), Fused deposition modelling (FDM), Selective laser sintering (SLS), 

and microstereolithography (MSTL). These SFF techniques provide more advanced controllability 

of the process and the fabricated structure than the conventional methods. However, some SFF 

techniques, MSTL for instance, have drawbacks such as a narrow range of available materials 

due to its use of the photopolymerizing process. FDM has difficulty in pre-processing materials 

necessarily as filaments, as well as a limit on available materials due to use of only filament-

shaped precursors. 3DP is also cumbersome in post-processing of removal of internal unbound 

powder; furthermore, the removal process is not always completed. Residual powder within the 

scaffolds may cause problems in vivo. 

In this chapter, we developed Direct Polymer Melt Deposition (DPMD) process in order to 

overcome the aforementioned shortcomings via conventional methods and previous SFF 

methods. This process is a highly versatile instrument for fabrication of various bio-applicable 

structures in the field of tissue engineering. It also provides universality of available biopolymers 

by controlling the processing temperature. This chapter is focused on the characterization and 

applications of the DPMD process and the scaffolds composed of the extruded microfibers. 

Furthermore, DPMD process can be also utilized for fabricating framework structure of hybrid 

construction continued in the following chapter. 

 

 



 
 
 
 

23 

2.2 Polycaprolactone (PCL) and material property 

Polycaprolactone (PCL) is a semicrystalline, biodegradable polymer belonging to the 

aliphatic polyester family (Figure 1). PCL has been shown to degrade by random hydrolytic 

scission of its ester groups, and under certain circumstances, by enzymatic degradation [54]. 

The biodegradability and extensive in vitro and in vivo biocompativility have allowed PCL to be 

applied to a number of medical and drug delivery devices. At present, PCL is regarded as a soft 

and hard-tissue compatible material including resorbable suture, drug delivery system, and 

recently tissue engineered scaffold. 

 

 

Figure 2-1. Chemical structures of Poly(-caprolactone). 

 

 

Table 2-1. Thermal and mechanical properties of respective synthetic biodegradable 

polymers. 
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The other aliphatic polyesters include poly(lactide) (PLA), Poly(glycolide) (PGA), and 

poly(lactide-co-glycolide) (PLGA), and also provide a variety of bio-medical applications. Table 2-

1 shows some thermal and mechanical properties of the respective polymers. Among these 

materials, PCL is an easily extrudable biomaterials due to its favorable property of thermoplastic 

behavior. Because it has a low glass-transition temperature of -62℃, a low melting temperature 

of 57℃, a high decomposition temperature of 350℃[54], the thermoplastic processing such as 

extrusion, casting, and molding can be easily performed with a wide range of processing 

temperatures. The variation of viscosity according to shear rate is relatively smaller than that of 

other polymers such as polystyrene (PS). The wide range of flow shear rate as well as 

temperature is advantageous in that phase transition of the material is necessary in the 

fabrication process. Furthermore, due to the low glass-transition temperature below zero, the 

pliable property of PCL around the room temperature and body temperature provides unique 

usefulness of PCL structures as well as PCL itself in a variety of biomedical applications.  

As the proposed fabrication process is based on polymer extrusion, the viscosity of molten 

polymer is very important for the precise fabrication. In other words, the significant material 

property influencing on the polymer flow rate through the nozzle is the viscosity, which is varied 

with temperature and shear rate condition. To measure the melt viscosity of PCL, Advanced 

Rheometric Expansion System (Rheometric Scientific, USA) was used. As shown in Figure 2-2, 

the molten PCL show higher viscosity according to decrease of temperature and shear rate like 

any other viscoelastic material.  
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Figure 2-2. Viscosity of molten PCL as a function of shear rate, for four temperatures. 

 

Throughout this study, PCL (440744-250G, Mw 80000, Sigma Aldrich) was employed. The 

PCL is provided in granule form and Granules of the raw material were fed into a heated syringe 

and melted as syringe temperature rose over the melting temperature of 60℃.  

 

 

2.3 Direct Polymer Melt Deposition (DPMD) apparatus 

2.3.1 Procedure of the DPMD process 

Figure 2 shows concepts of the microfabrication process using the polymer melt extrusion 

method. The system for the proposed process consists of three main components: (1) a 
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stainless steel syringe equipped with micro-nozzle and syringe heating device; (2) an air 

compressor with pressure-controllable dispenser; (3) a three-dimensional micropositioning 

system based on CAD/CAM. 

 

 

Figure 2-3. Schematic diagram of the DPMD process. 

 

The sequence of 3D integration of micro-extruded structure is briefly as follows. As the heat 

input of the coiled heater deployed around the syringe and the nozzle can be controlled by 

temperature controller, the process temperature can be variously selected above melting point. 

This controllability allows the thermoplastic polymer to be in variable melt viscosity affecting the 

resultant micro-extrudates. When compressed air is applied to the polymer melts in the syringe, 
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fiber-shaped polymer melts are extruded out through the micronozzle. Three-dimensional 

movements of the micronozzle according to the tool-path based on the scaffold morphology can 

fabricate 3D microfibrous structures while the material is extruded. In this process, principal 

process parameters that affect the characteristics of the resultant fibrous scaffolds are the 

diameter of the micronozzle, the temperature of the material process, the pressure of the 

compressed air and the velocity of the nozzle. 

 

2.3.2 Apparatus of the DPMD process 

Figure 2-4 and 2-5 show the apparatus of DPMD process and its specification, repectively. 

The system of the proposed DPMD process consists of a stainless steel syringe with a 

micronozzle, a syringe heating device, a compressed air dispenser and a three-dimensionally 

moving micropositioning system. The heated syringe with micro-nozzle utilizes a stainless steel 

syringe that has high thermal conductivity. It is possible to change the micro-nozzle to another 

with a different inner diameter. In the extrusion process, the inner diameter of the micro-nozzle 

is the principal process parameter that affects the features of the resultant extrudate. Therefore, 

exchangeable syringes with different micro-nozzles allow the fabrication of various microscaled 

structures. The micro-nozzles come in a diameter range from 0.2 to 1.2 mm. The temperature of 

the syringe and the nozzle is also one of the main process parameters, and the syringe module 

is surrounded with the coil heater generating the heat up to 400℃.  

This process employs a pneumatic pressure control system driven by filtered compressed air 

instead of by a plunger. It applies high pressure into the syringe at up to 1.2 MPa using the air 

compressor and pressure booster. When compressed air is applied to the polymer melts within 

the heated syringe, a micro-fibrous extrudate emerges from the nozzle. Then, three-dimensional 

motion of the nozzle allows deposition and formation of three-dimensional non-random porous 
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structures. Employing a ball screw, stepping motor and motion guide modules, the three-

dimensionally moving micropositioning system has enough accuracy and repeatability to allow 

control within a few micrometers. As well as the precise positioning control, the velocity of the 

syringe module can be uniformly controlled in a range from several hundred m/sec to 40 

mm/sec. The micropositioning system of the DPMD apparatus is controlled by a PC based control 

system. The movement control board can be applied to in personal computers of 1 Ghz or more. 

The objects subjected to control are three stepping motors, nine digital input ports and six 

digital output ports.  

 

 

Figure 2-4. Overall configuration of DPMD apparatus; (a) stainless steel syringe with a 

micronozzle, (b) sytringe heating device, (c) temperature controller, (d) compressed air dispenser, 

(e) air compressor and pressure booster. 
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Range of 

X, Y, Z axis 

X 200 mm 

Y 200 mm 

Z 200 mm 

Specifications 

of Tool 

Nozzle diameter 200 ~ 1200 µm 

Tool speed 0 ~ 50 mm/s 

Dispensing pressure 0 ~ 6 kg/cm2 

Boosting ratio ×0 ~ ×2 

Temperature range RT ~ 400 ℃ 

 

Table 2-2. Specifications of the DPMD apparatus. 

 

 

2.4 Process parameters for DPMD 

2.4.1 Relationship among process parameters 

A flow of fluid through a tube of specific length and diameter can be approximately 

expressed with the diameter or radius of the tube, the pressure drop between entrance and exit 

of the tube, the length of the tube, and the viscosity of the fluid [55]. Such a relationship is 

called Hagen-Poiseuille’s law. In order to put an application of the equation into the developed 

process, several assumptions are needed, as follows. 
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• Polymer melts are viscous Newtonian fluids. 

• Pressure gradient in the syringe is negligible. 

• Weight of polymer in the syringe is negligible. 

• Cross sections of the polymer extrudate and the deposited fiber are circular 

 

According to Hagen-Poiseuille’s equation, the volume rate ( eQ ) of polymer melt flow 

ejected from the nozzle can be simplified as: 

 

(2.1) 

 

where hPR ,,  and   are the inner radius of the nozzle, the pressure drop, the length 

of extrusion path inside the nozzle, and the viscosity of polymer melts, respectively. 

On the other hand, the volume rate ( dQ ) of the deposited extrudate can be approximated 

as follows: 

 

 (2.2) 

 

where ,,,, tlrV  and v  are the volume of deposited extrudate, the radius of the 

deposited fiber, the length of the deposited fiber, time during polymer deposition, and the 

velocity of polymer deposition (the velocity of the syringe). 

 We know that the volume of the deposited extrudate is equal to the volume of polymer 

melt flow ejected from the nozzle; thus, an expression for the radius of the deposited fiber can 

be obtained by substituting Equation (2.1) into Equation (2.2): 
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(2.3) 

  

 As shown in Equation (2.3), the value of the deposited fiber radius is expected to be in 

proportion to the square of the radius of the nozzle and the square root of the pressure drop 

(applied pressure into the syringe), and in inverse proportion to the square root of the velocity 

of the syringe module.  

 

2.4.2 Microfiber deposition test 

The experiments were performed to analyze the relationship between the aforementioned 

two main parameters and the geometry of the resultant deposited fiber. The parameters 

included the moving velocity of the syringe module, and the applied air pressure into the syringe. 

As for the features of the nozzle, the lengths of extrusion path inside the nozzles are uniform at 

1 mm for all nozzles used in this system. The inner diameter of the nozzle connected to the 

syringe was 200 mm, and the temperature of the coil heater was determined to be 140℃. In 

order to compare between the experimental and the theoretical results, Equation (2.3) was used 

to calculate the radius of theoretical product. According to the data of Figure 2-2, the viscosity 

(  ) of the PCL melt changes depending on the temperature and the shear rate ( ). The shear 

rate of the molten material can be obtained by Equation (2.4): 

 

(2.4) 

 

Where Q is the practical volume of the extruded fiber. Under the several conditions of the 

process parameters, the calculated shear rates and the relevant values of results are listed in 
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Table 2-3.  

 

h R v P 
shear 

rate 
 calculated r 

experimental 

radius 

1 0.2 0.5 750000 15.6 3740 0.283 250 

1 0.2 1 750000 17.1 3682 0.201 185 

1 0.2 1.5 750000 19.2 3610 0.166 160 

1 0.2 2 750000 19.6 3610 0.144 140 

1 0.2 0.5 400000 9.5 4030 0.199 195 

1 0.2 1 400000 9.8 4030 0.140 140 

1 0.2 1.5 400000 11.7 3972 0.115 125 

1 0.2 2 400000 12.1 3922 0.100 110 

 

Table 2-2. Calculated shear rate and measured viscosity of PCL melts. 
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Figure. 2-5. Relationship of the deposited fiber radius versus velocity of the nozzle and 

applied air pressure. 

 

Figure 2-5 shows the resulting features of the deposited fiber for each experiment. As 

shown in Figure 2-5, the solidified fiber radius decreases with the increase of velocity and the 

decrease of pressure, respectively. The variation of the experimental results has a tendency 

similar to those of the theoretical values.  

Therefore, using the relationships between the applied air pressure ( P ), the moving 

velocity ( v ), and the shear rate ( ) of PCL melt, the effective sectional area ( ) can be 

defined as  

 

(2.5) 
v
P


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From this value, the extruded fiber radius ( r ) can be expressed as 

 

(2.6) 

 

Experiments were carried out with fiber extrusion at various effective extrusion rates. As 

shown in Figure 2-6, the radius of the extruded fiber is tended to be proportional to the effective 

sectional area. 

 

 

Figure 2-6. Relationship between effective sectional area and fiber radius. 

 

The extruded fibers consist of three-dimensionally integrated scaffold and determine the 

overall architecture of the scaffold. Therefore the radius of the extruded and deposited fiber is 

significant factor for the scaffold design. It can influence on overall shape of scaffold, pore 
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morphology, porosity, and mechanical property of scaffold. As given by Equation (2.6), the 

effective sectional area of the extruded fiber using the process parameters is defined, thereby 

facilitating the well-defined deposition process and scaffold design. 

 

2.4.3 Design and fabrication of 3D scaffolds 

 

 

Figure 2-7. Resultant 3D scaffold fabricated by DPMD process. 

 

Figure 2-7 shows morphology of the 3D woodpile-shaped scaffolds composed of micro-

scaled fibrous extrudate of which the radius is 365±15 m. The inner diameter of the micro-

nozzle connected to the syringe was 400 m and the processing temperature was determined to 

be 140±5 ℃, The applied air pressure for the dispensing process was determined to be 0.55±

0.05 MPa. Velocity of the 3D micropositioning system was 1.4 mm/sec. Orthogonal stacking of 

each fibre array was successfully conducted. Thus, it can be observed from Figure 2-7 that fully-

interconnected pores are formed within the porous scaffold and the arrangement and the shapes 
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of the deposited microfibres have high degrees of uniformity and consistency. Lastly, control of 

scaffold morphology is achieved in this process by diversifying the geometry design and process 

parameters. 

 

 

Figure 2-8. Other types of scaffolds with various porosity. 

 

 The theoretical porosity was calculated based on an estimation of the outer volume and 

the amount of deposited PCL microfibers. It was assumed that the scaffold was cube-shaped, 

composed of long, cylindrical microfibers.  
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(2.8) 

 

(2.9) 

 

where dlHww ,,,, 21  and n  are the scaffold width, scaffold length, scaffold height, fiber 

length, fiber diameter and number of fibers in the scaffold, respectively. In the case of 200 m 

radius as in Figure 2-7, the theoretical porosity from Equation (2.7) is determined to be 

approximately 70%. The fabricated scaffolds with various porosities can be obtained by 

adjusting the horizontal gap and the diameters of the microfibers, as shown in Figure 2-8. 

 

 

2.5 Scaffold design and applications 

2.5.1 3D framework for adipose tissue formation 

Nanofilament(NF)-integrated multicellular spheroids and their integration with 3D 

microsturcture for vascularized adipose tissue formation were developed in prof. Park’s 

laboratory (in KAIST) [56]. The multicellular spheroids comprised of mesenchymal stem cells 

(MSCs) and synthetic nanofilaments as shown in Figure 2-9. Electrospun poly(L-lactic acid) (PLLA) 

nanofiber mesh was cut into pieces of nanofilaments by aminolysis fragmentation. The 

nanofilamenets were surface-modified with RGD peptide by EGS coupling reaction and then self-

assembled with MSCs in non-adhesive conical-bottom tubes after centrifugation. The formation 

procedure and the resultant spheroids are shown in Figure 2-9. 
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Figure 2-9. Preparation of NF/hMSC composite multicellular spheroids. (a) A schematic 

diagram illustrating the formation of composite spheroids (b) Stereoscopic image of as-prepared 

composite spheroids. (c) SEM image of the composite spheroid with overall shape. (d) High-

magnification SEM images (e) Surface morphology of the composite spheroid showing 

nanoporous geometry [56].  

 

With these multicellular spheroids, 3D bio-hybrid construction can be realized by 

incorporating the spheroids into the micro-structured scaffold fabricated by DPMD process. 

Figure 2-10 shows the assembly between spheroids and framework scaffold and the subsequent 

3D construction through repeatedly interlocking each spheroids-framework hybrid unit by 

additive layer-by-layer manner.  

The polymeric microstructured framework was fabricated the DPMD process described in 

previously. The process included firstly melting a bio-degradable polymer (polycaprolactone MW 

80,000 in this work) in a heated barrel, extruding the molten polymer through a micro-scale 

nozzle (inner diameter = 400 µm) by applying compressed air, and finally depositing 

microfibrous array and three dimensional solidified structure in a layer-by-layer (LbL) manner. 

The resultant structure provided the frame architecture of the hybrid construction by employing 
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3D woodpile-like microfibrous structure with periodical void spaces. The extruded microfiber with 

200 µm diameter was obtained by adjusting the process parameters including applied air 

pressure (0.4 MPa) and moving velocity of the nozzle (2 mm/sec). The unit framework designed 

with a 2 bilayers configuration in the form of disc (diameter = 6 mm). And the spacing of the 

microfibrous array making up the framework was determined as 400 µm considering the 

spheroid size (over 400 µm) for successful placement of the spheroids into the void spaces. 

 

 

Figure 2-10. 3D biohybrid assembly with NF/hMSC composite spheroids and 

microstructured-scaffold. (a) Schematic illustration of DPMD process from PCL polymer. (b) The 

architecture of the fabricated scaffold with woodpile-like microfibrous structure (fiber 

diameter¼200mm, fiber spacing¼400mm). (c) The differentiated composite spheroids were 
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hexagonally packed along the ordered array of void spaces of microfibrous scaffold and firmly 

anchored by cellular adhesion process. (d,e) 3D hybrid construct was built by successive 

stacking of spheroids-embedded scaffold units to form a complete 3D cylindrical geometry [56]. 

 

After aligning the spheroids along with periodical void spaces, further incubation for 30 min 

was performed to confirm the secure anchor of the spheroids by cellular adhesion process. And 

then these unit spheroids/framework hybrid layers were vertically interlocked to form terminal 

3D shape by additive layer-by-layer fashion. Theses stacked hybrid constructs were further 

incubated for 1 h for every unit layers to attach to the adjacent layers by self-adhesion to form a 

complete 3D biohybrid constructs. 

This fabrication strategy permits the hierarchical assembly through the cellular adhesion 

allowing the connection of the nanostructure and microstructure. In addition, due to the non-

vascularized nature of the assembled spheroids, the blood vessel formation is crucially needed 

for overcoming aforementioned limitations of the current graft procedures. Thus, the 

microfabricated framework was allowed to deliver angiogenic growth factor for vascularized 

adipose tissue formation. 

The woodpile-shaped frameworks were designed from the basis of the NF/hMSC spheroid 

diameter to conform to periodic gaps in the microfibrous layer. Along a three-axis motion-

controlled micropositioning system, the molten PCL polymer was dispensed through the 

micronozzle coupled to a stainless steel syringe surrounded with coiled heater [Figure 6(a)]. 

With this controllability of the CAD/CAM based process, the configuration of the framework such 

as fiber diameter, fiber spacing and void shape could go with the spheroid size or shape. 
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2.5.2 3D scaffold coated with functional materials 

As aforementioned in this chapter, 3D microstructured scaffolds with precisely defined 

architectures can be fabricated by the DPMD process, and thereby can have may promising 

features for tissue engineering applications, such as controllable porosity, desirable mechanical 

strength, and adjustable shape fitting to a tissue defect site. For the DPMD process, PCL was 

employed as scaffold materials. However, the surface of PCL structure has a limited property for 

cell adhesion due to its hydrophobicity. Thus surface modification with bioactive agents is 

additionally required.  

Layer-by-layer (LbL) polyelectrolyte multilayer assembly is an attractive and facile surface 

modification approach, which generates a thin surface film from a few nano- to several 

micrometers in thickness with a precise control. It comprises of alternating deposition of 

polyanions and polycations on the basis of electrostatic force between two oppositely charged 

species, resulting in a self-assembled multilayer on the surface. Due to the versatility with regard 

to the introduction of any functional molecules into the multilayer, a wide variety of therapeutic 

components could be incorporated and released in a controlled manner. While the LbL assembly 

was often implemented onto the planar substrate due to a easy fabrication process, the 

challenge remains to assemble the multilayer on more complex three dimensional (3D) 

structures. 

Hydroxyapatite (Hap) is a naturally occurring crystalline calcium phosphate (Ca10(PO4)6(OH)2) 

and is clinically used as an excellent substitute for mineralized hard tissue due to the similar 

composition to the mineral components of human bone and enamel. HAp itself or in the form of 

a bioactive coating on biomedical implant devices has been proven to offer better 

osteoconductivity, leading to ultimate osteointegration. Collagen is a major organic component 

constituting natural bone, and has been also used to create favorable extracellular milieu for 
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bone regeneration. The multicomponent scaffolds containing HAp and collagen would be highly 

desirable for bone tissue engineering due to the composite nature of bone matrix. For example, 

the apatite/collagen composite coating on a poly(L-lactic acid) (PLLA) porous scaffold was 

proven to improve osteoblast-like cell adhesion and osteoblastic activity. In addition, the 

composite of hydroxyapatite and collagen conjugated with hyaluronic acid exhibited good 

mechanical performance with excellent biocompatibility, ideal for bone tissue engineering 

materials. 

Herein, the PCL-microstructured scaffold was fabricated by the DPMD process, and coated 

with hydroxyapatite/collagen nanocomposite in a layer-by-layer manner. Figure 2-10 shows the 

PCL scaffold and SEM images of its surface coated with nanocomposite materials. The scaffold 

was designed as the fiber diameter of 200 m and the fiber spacing of 400 m.  

In order to verify the cyto-compatibility of the surface-modified scaffold, Human 

mesenchymal stem cells (hMSCs, Lonza, MD) were cultured within the modified scaffolds. The 

prepared specimens were three types including the bare scaffold without surface modification 

and the scaffolds coated with 5th and 20th bilayer deposition of HApNPs and collagen. The 

hMSCs suspension with culture medium (0.2 ml, 2  105 cells) was loaded on both sides of the 

scaffolds. Four hours after seeding, cellular adhesion was investigated using CCK-8 assay kit 

(CCK-8, Dojindo laboratories, Kumamoto, Japan). And To assess hMSCs proliferation, total DNA 

content (n = 5) was measured by using Hoechst 33258 (Sigma, St. Louis, MO), a fluorescent  

dye for staining double-stranded DNA. The examined time points were 3, 7, 12, 21 days after 

cell ceeding. 
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Figure 2-11. (a) Illustration of DPMD procedure giving rise to a 3D woodpile-like 

microfibrous scaffold. (b-e) SEM images of nanocomposite multilayer-coated scaffold with 

HApNPs and collagen. 
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Figure 2-12. (a) hMSCs adhesion to bare, 5 bilayers-coated, and 20 bilayerscoated scaffold. 

(b) Quantification of DNA amounts of hMSCs on TCPS, bare, 5 bilayer-coated, and 20 bilayer-

coated scaffod during 21 days of culture in growth medium.  

 

As shown in Figure 2-12(a), the adhesion of hMSCs onto the scaffold coated with 20 

nanocomposite multilayer was greatly enhanced as compared to bare scaffold (~230% increase). 
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In addition, cellular adhesion was significantly enhanced with the number of deposited layers. 

For assessment of hMSCs proliferation, DNA amount was quantified as a function of incubation 

period. As expected, the presence of surface multilayer played an important role in favoring the 

cellular growth in the scaffold. 

 

2.5.4 Controlled membrane for surgical application 

As the DPMD process employs the simple pressure-assisted dispenser as a fundamental 

mechanism of the process, a wide range of polymeric materials can be used including polymer 

solution dissolved in volatile solvent. When the polymer solution was deposited onto the 

substrate with chemical resistance such as stainless steel, glass, and Teflon-coated substrate, it 

solidified for a few seconds as accompanied by solvent evaporation. In other worlds, while the 

DPMD process produces the solid structure through solidification below melting point, the 

modified dispensing process makes it by the solvent evaporation. When the polymer solution 

was used in the dispensing process, the thinner thickness of the deposited layer can be attained 

by taking a higher velocity of nozzle movement and a lower applied pressure of compressed air. 

The process parameters including the velocity of 5 mm/sec and the pressure of 0.1 MPa 

provided the sheet-like thickness dimension of approximately 50 mm. Figure 2-13 show the 

deposited membrane with PCL solution (20 wt% in methylene chloride). As seen in the figures, 

the resultant structure has a pliability due to its thin thickness (50~60 m) and the rubbery 

property of PCL material. The pliable and flexible sheet-like structure can be applied in 

biomedical field requiring two-dimensional membrane.  
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Figure 2-13. Two dimensional sheet fabricated by deposition of PCL solution. 

 

 

Figure 2-14. Concept of post surgical anti adhesion barrier. 

 

One of the possible applications is post surgical anti-adhesion membrane. Tissue adhesions 

occur after surgical treatment, most frequently of peritoneum and pelvis. Though the adhesion is 

a physiologically important part of wound healing, undesirable adhesions after surgical treatment 

often derive harmful effect, functional obstruction, and re-operative surgery [57]. In order to 
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reduce postsurgical adhesion formation, the use of physical barriers has been attempted. The 

concept of anti-adhesion barrier is illustrated in Figure 2-14.  

 

 

Figure 2-15. Schematic diagram for coating HA gel on the PCL membrane. 

 

Various natural and synthetic polymer films, membranes, and nonwoven fabrics have been 

developed as non-absorbable or absorbable physical barrier materials. In this research, the 

aforementioned PCL sheet was used as a basal structure of the anti adhesion membrane, and 
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incorporation of hydrogel in the membrane was additionally performed. In order to assure the 

structural pliability, the basal membrane was designed as a void-including structure. Because the 

voids in the membrane can cause impairment of physical anti-adhesion, filling the void space 

with other soft materials was required. Hyaluronic acid (HA), which has been popularly used for 

biomedical applications because of its various biological functions, was employed for the filling 

materials. The filling process with HA hydrogel is illustrated in Figure 2-15. After aminolysis of 

PCL membrane for facile immobilization of HA, the PCL membrane was immersed into solution 

with methacrylated HA, and crosslinked under UV exposure of 365 nm wave length for 30 

minutes.  

The resultant structure immobilized with HA hydrogel is shown in Figure 2-16. The filled 

hydrogel in the structure can have also the function of buffer between organs or tissues because 

of its water-holding property under in-vivo situation.  

Rat peritoneum was selected to investigate the tissue anti-adhesion potential of HA-filled 

PCL membrane because the peritoneum is the one of most frequently occurring tissue adhesion 

sites after surgical treatment. For this, the membrane was implanted between cecum and 

peritoneum with wall defects of the rat. The other rat was received no membrane between them. 

Sprague-Dawley rats weighing 200-300 g were used in this experiment. The animals were cared 

according to the Korean Food and Drug Administration guidelines for the care. Surgery was 

performed under general anesthesia (an intramuscular injection of ketamine hydrochloride and 

xylazine hydrochloride). The rats were sacrificed after 7 days postsurgery. As shown in Figure 2-

17, the application of the membrane to the defects showed less adhesion than that of no 

treatment. From this experimental result, the developed membrane may be a good candidate as 

a tissue adhesion as a tissue adhesion barrier memebrane owing to its efficient tissue anti-

adhesion potential as well as the flexibility and biodegradability.  
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Figure 2-16. (a) Porous PCL membrane. (b) PCL membrane coated by hydrogel. (c) A part 

of anti-adhesion membrane. (d) SEM image of the surface of hydrogel coating PCL membrane 

dried. 

 

 

Figure 2-17. Anti-adhesion test; (a) abdominal operation of experimental rat and insertion of 

the HA-filled membrane, results of in vivo tests (b) with no treatment and (c) with the anti-

adhesion membrane. 
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CHAPTER III 

CONTROLLED ELECTROSPUN NANOFIBERS FOR 

CONSTITUENTS OF 3D SCAFFOLD 

 

 

3.1 Introductory remarks 

Electrospinning is a simple and versatile process that can produce nanofibers in diameters 

ranging from micrometers to nanometers. This technique uses electrostatic force from a high 

voltage, where the most typical form of as-spun fibers is a randomly configured non-woven mat 

[58-60]. As for being biocompatible materials, these nanofibrous mats have a wide range of 

tissue engineering applications. In order to conduct the electrospinning. The polymer should be 

in a liquid form dissolved in an organic solvent. Thus the properties of the polymer solution are 

crucial factors for the electrospinning process and the formation of nanofiber. The solutions 

should have appropriate conditions of viscosity, electrical properties, surface tension, and rate of 

solvent evaporation. As well as the properties of polymer solution, other important parameters 

affect the electrospinnin process including the supplied voltage, the feedrate of solution, the 

collector type, the needle diameter, and the spinning from needle tip to collecting target. Under 

a favorable combination of the above properties and parameters, the morphology of the 

electrospun fiber is determined. 

Meanwhile, the current interest in the electrospinning methods has been concentrated on 

other forms of nanofibers, especially uniaxially oriented arrays of nanofibers, in order to expand 
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their applications.  

There have been several proposals on how to fabricate the aligned nanofibers from various 

angles. There have been two kinds of techniques where well-aligned and highly ordered 

architectures could be realized. One method has the rotating object used as collector [46-49]. 

For this method, a cylindrical mandrel [46, 47], a thin disk with a sharp edge [49], and a spaced 

wire drum[48] were used as the rotating grounded collectors. The nanofibers from the sharp 

edge of the disk in these methods were reported as providing better alignment than the other 

methods. However, it was not easy to collect a wide area of aligned nanofiber arrays due to the 

geometrical limitation of the disk collector. On the other hand, the techniques of the other 

methods can fabricate the aligned nanofibers by using static and separated conductive 

electrodes, which is known as the gap method [50, 51, 61, 62]. When the two pieces of parallel 

electrodes are placed with a gap, the electric field lines adjacent to the electrodes are split into 

each edge of the electrodes. Thus, electrospun jets are stretched and aligned across the gap by 

the electrostatic field profile and the repulsive force caused by the residual charge of the 

nanofibers [50].  

The purpose of this chapter was to improve the alignment quality of the electrospinning 

nanofibers at the base of the gap methods. A simple reconfiguration was used between the 

separate electrodes. Compared to the planar configuration of the electrodes in the previous gap 

methods, the suggested collector that was used included an inclined gap determined by the 

placement of a horizontal and a vertical conductive strip with their mutual height difference. Due 

to the height difference, a suspension of the electrospun nanofiber occurred in turn at the edge 

of the lower strip after it occurred at the upper strip. Thus, continuous and well-aligned fiber 

arrays could be fabricated. It was caused by more space and time for self-alignment as well as 

by more effective stretching force during the sequential suspension. We herein used the 

nanofiber alignment technique, i.e., an inclined gap method, employing polycaprolactone (PCL) 
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which has been widely used in the tissue engineering field.  

 

 

3.2 Fundamentals of electrospinning process 

3.2.1 Electrospinning apparatus 

In electrospinning, a high direct-current (DC) voltage in the kilovolt rage is applied to a 

polymer solution held in a metal needle. A polymer drop from the needle tip is deformed into a 

Taylor cone due to the repulsive electrostatic force that overcomes the surface tension of the 

polymer solution, and a charged jet of the solution is then ejected from the tip of the Taylor 

cone. As the jet undergoes a stretching process and moves toward a grounded target (collector), 

it is accompanied by solvent evaporation, which results in nanofiber mats forming on the 

collector. The setup for electrospinning process is shown in Figure 3-1. 

The electrospinning setup basically consists of a syringe needle connected to a high-voltage 

(up to 30 kV) direct current power supply, a syringe pump, and a grounded collector. The 

polymer solution is supplied to the needle tip in order to form a hemispherical droplet by the 

syringe pump. Constant volume flow rate of the polymer solution is precisely controlled by the 

syringe pump. The syringe is loaded on the syringe pump, and is led to the needle through PE 

tubing line. The separation between the needle and the syringe (with syringe pump) allow 

control of needle position. Thus, the needle module including needle and needle adapter can be 

placed at various positions from the target collector. 
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Figure 3-1. Apparatus of electrospinning process. (a) Vertical controller (distance from 

needle to collector), (b) collector for nanofiber alignment, (c) typical collector (aluminum plate), 

(d) microsyringe pump, (e) metal needle, (f) high voltage (DC) power supply 

 

The high voltage electrode is used to conduct the charge to the polymer solution, and is 

connected to the needle. The high voltage is generated from the DC voltage power supply (0-30 

kV). Collector electrodes come in many shapes, sizes, and geometries but are commonly some 

form of flat metallic sheet for randomly configured nanofiber mats. For aligned nanofibers, the 

other form of electrode configuration can be designed as following chapter. The electrode is 

connected to ground, hence carrying the opposite charge to the high voltage electrode. The 

ranges for the experimental operating parameters are shown in Table 3-1. 
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Vertical controller 
(distance from substrate) 

50 ~ 300 mm  

Collector for NF alignment Aluminum sheet (0.2t)  

Typical collector  Aluminum plate  

Syringe pump  
syringe size : 10 ㎕~60ml 

  flow rate : 0.1 ㎕/h~426 ml/h  

Metal needle 
(inner diameter)  

0.18 ~ 2.27 mm  

Power supply 
(applied voltage)  

0 ~ 30 kV
 
 

 

Table 3-1. Specifications of electrospinning apparatus. 

 

 

3.2.2 Polymer solution parameters 

The properties of the polymer solution have the most significant influence in the 

electrospinning process and the resultant fiber morphology. The process parameters as well as 

solution property for the electrospun nanofiber are shown in Figure 3-2.  
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Figure 3-2. Process parameters of typical electrospinning. 

 

One of the conditions necessary for electrospinning to occur where fibers are formed is that 

the solution must consists of polymer of sufficient molecular weight and the solution must be of 

sufficient viscosity. Under electrostatic field generated between needle and collector, as-spun jets 

are stretched as they travel from the needle to the collector. If they don’t have the solution 

properties of sufficient molecular weight and viscosity, the electrically driven jets are broken up 

rather than maintaining a continuous solution jet during the stretching. Thus, at a lower viscosity, 

it is common to obtain beads or bumpy fibers on the collector. Table 3-2 shows the effects of 

spinning conditions on the formation of bead or uniform fiber in several cases of synthetic 

polymers [63].  
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Polymer 
Molecular 

Weight 
Solvent 

Condition of  

Polymer 

concentration 

Other 

spinning 

parameters 

Poly(-
caprolactone), 
PCL 

80,000 
Dichloromethane(MC)/ 
Dimethylformamide(DMF)

Uniform fibers : 13 
wt% 
Beaded fibers : 10 
wt% 

- 

Poly(ethylene 
oxide), PEO 

900,000  Water 

Uniform fibers : 3.8 
– 4.3 wt% 
Beaded fibers : 1 - 3 
wt% 

Voltage : 15 kV
Distance : 21.5 
cm 

Poly(D,L-lactic 
acid), PDLA 

- Dimethylformamide(DMF)

Uniform fibers : 35 
wt% 
Beaded fibers : 20 - 
30 wt% 

Voltage : 20 kV
Distance : 15 
cm 
Feed Rate : 1.2 
ml/h 

Poly(vinyl 
chloride), PVC 

- THF/DMF (50/50) 

Uniform fibers : 15 
wt% 
Beaded fibers : 10 - 
13 wt% 

Voltage : 15 kV
Distance : 10 
cm 

Polystylene, PS 140,000  THF/DMF (50/50) 

Uniform fibers : 15 
wt% 
Beaded fibers : 7 - 
13 wt% 

Voltage : 15 kV
Distance : 12 
cm 

 
Table 3-2. The condition of polymer concentration between uniform and beaded nanofibers 

[63]. 

 

As mentioned above, nanofiber formation is based on stretching of the solution caused by 

repulsion of the charges at its surface. Thus the conductivity of the polymer solution is crucial 

factor of the electrospinning process. The increase of solution conductivity allows more charges 

to be carried onto the solution jets. As each solvent has a specific solubility and conductivity for 

different polymers of electrospinning materials, optimal combination of the solvents is necessary. 

Table 3-3 shows the conductivity of some solvents commonly used in electrospinning [63].  
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Solvent 
Conductivity 

(mS/m) 

1,2-Dichloroethane 0.034 

Acetone 0.0202 

Butanol 0.0036 

Dichloromethane/ 
Dimethylformamide (40/60) 0.505 

Dichloromethane/ 
Dimethylformamide (75/25) 0.273 

Dimethylformamide 1.090 

Distilled water 0.447 

Ethanol 0.0554 

Methanol 0.1207 

 

Table 3-3. Electrical conductivity of solvents [63]. 

 

If a solvent of a higher electrical conductivity is added to polymer solution, the 

electrospinnability of the solution can be improved. In the case of PCL solution, when 

dimethylformamide (DMF) is added to the PCL solution dissolved in methylenechloride (MC), the 

problem of bead or bumpy fiber formation can be reduced. However, the solubility and volatility 

of solvent should be considered together. As low solubility or volatility can bring about the beads 

even though high conductivity, the adjustment of the ratio of solvent mixture is necessary. As is 

widely used, DMF addition of 20 to 30 % of total solvent volume is optimum value for PCL 

nanofiber formation [64]. The ratio of MC/DMF (80/20) is determined and used identically in this 
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research. 

 

3.2.3 Processing conditions 

The aforementioned solution parameters influence the morphology of electrospun fiber in 

combination with the other process parameters, such as applied voltage and spinning distance 

from needle to collecting target.  

A principle factor in electrospinning process is the application of a high voltage to the 

solution. Typically, the high voltage of more than 6 kV can induce the formation of Taylor cone 

from polymer solution drop, and initiates the elctrospinning process [65]. After formation of the 

jet from Taylor cone, the columbic repulsive force in the jet will then stretch the viscoelastic 

solution. Generally, if the applied voltage is higher, the greater amount of charges included in the 

jet cause the fiber formation to accelerate faster and more volume of solution is drawn from the 

solution drop fed through the needle. While this, the insufficient charges caused by the 

application of low voltage could have a tendency of the bead formation in the electrospinning 

process. Thus, the effective range of applied voltage in each case of the polymer solution should 

be determined before conducting the electrospinning process.  

In this research, the electrospinning was performed using not only homogeneous PCL 

material but also PCL/collagen mixture. As is well known, the natural polymer such as collagen 

can provide the improved bio-functional properties of cell-scaffold interaction [66]. For the 

electrospinning of PCL/collagen mixture, polycaprolactone (PCL, average, MW ca. 80,000) and 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 99+%) were supplied by Aldrich (Milwaukee, WI), and 

Collagen type I (from calf skin) was purchased from Sigma (St. Louis, MO). The polymer solution 

for the electrospinning was prepared by dissolving PCL/collagen (6/4 weight ratio) blend in HFIP 

at a concentration of 10 wt%. With this polymer solution, the effective voltage range for the 
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spinning of beadless fiber is determined varying the applied voltage. As shown in Figure 3-3, 

when the applied voltage was increased, the problem of the bead formation could be reduced. 

22-gauge needle on the syringe pump at an infusion speed of 10 m/min was used for the 

experiment, and the grounded collector was placed 10 cm from the needle tip. 

 

 

Figure 3-3. Effective voltage range for nanofiber formation; (a) bead formation at less than 

9 kV, (b) fibers with beads at 9 to 16 kV, (c) fibrous mats at more than 16 kV. 

 

The flight time of as-spun jet until landing onto collector is also a significant factor in the 

electrospinning process. Varying the distance from the needle tip to the collector has a direct 

correlation with the flight time. For the formation of independent fibers, the flight of jet should 
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be sustained for a period of time to evaporate most of the solvents in the jet solution. When the 

spinning distance is reduced, the jets have a shorter time to travel before it reaches the 

collecting target. Furthermore, the shorter spinning distance causes the increase of electric field 

strength, which accelerates the jets onto the collector. As a result, the excess of residual 

solvents in the solution jets causes the fibers to merge where they contact each other. Figure 3-

4 (a) shows the interconnected network from the merged fibers at shorter spinning distance, 

while as-spun fibers are individually deposited even though they are in proximity [Figure 3-4 (b)].  

 

 

(a)                                   (b)  

 

Figure 3-4. The electrospun nanofibers at spinning distance of (a) 80 mm and (b) 160 mm. 

 

As well as the applied voltage and the spinning distance, several process parameters affect 

the electrospinning process. For a given voltage and distance, the feedrate of material solution 

and the diameter of needle should be adjusted in combination. If they are not in favorable 

condition, Taylor cone from the needle is in unstable state during the process of jet formation.  

On the other hand, ambient parameters such as surrounding temperature and humidity also 

have an effect on the electrospun fiber morphology. Since the humidity and temperature of the 

environment may determine the rate of evaporation of the solvent in the solution jet, the other 
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process parameters such as the applied voltage and the spinning distance are needed to be 

changed considering the ambient conditions. For example at a higher humidity, the longer 

spinning distance is recommended for the beadless fiber formation, because the volatile solvent 

in the solution jet may dry more slowly. 

 

3.3 Principles of electrospinning for aligned nanofibers 

The most fundamental way of getting uniaxially oriented fibers is through the use of a 

rotating collector. It is a simple and mechanical method of winding the electrospun fibers around 

the circumference of the rotating object. During the fibers are formed from the as-spun jets, the 

collector is rotated at a very high speed up to thousands of rpm. One possible geometry of the 

collector is cylindrical mandrel (Figure 3-5). Using the mandrel as the rotating collector, it was 

successful to obtain the aligned PGA and type I collagen nanofibers at the rotating speed of 

1000 rpm and 4500 rpm, respectively [46, 47]. Although the rotating mandrel technique 

provides obvious alignment of the fibers, only partial alignment is achieved.  

 

 

Figure 3-5. A rotating cylinder collector to obtain aligned nanofibers [67]. 
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Instead of rotating mandrel, a thin disk with sharp edge can be used as the rotating 

collector [49]. The electric field lines are converged onto the sharp edge so that an inverted 

envelope cone of the traveling jets formed and most of the as-spun fibers are attached to the 

edge (Figure 3-6). However, this method has a disadvantage in that the electrospun nanofibers 

can only be obtained on a narrow region due to the edge geometry. It may be a problem for 

applications which need large area of the aligned fiber mats.  

 

 

Figure 3-6. (a) Schematic illustration of the electrospinning process using rotating disk 

collector. Double-cone envelope of the jet is shown. (b) a flash photograph of a nanofiber that is 

attracted to the edge of the disk [68]. 

 

Besides using the rotating objects alone, it is possible to control the path of the electrospun 

jet by manipulating the electric field generated from auxiliary electrodes [69]. When an auxiliary 

electrode is placed next to the rotating mandrel along the direction of the jet progress, the fibers 
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can be deposited on the mandrel as they accelerate toward the electrode. This way allows the 

fiber alignment even at the lower rotation speed of less than 1000 rpm. Uses of parallel arrays of 

strips and knife-edged bars were tried as the auxiliary electrode. However, the resulting 

alignment of this method does not vary much from the other mechanically dynamic methods 

such as rotating mandrel and disk. 

 

Figure 3-7. Use of parallel strips as auxiliary electrode to assist in the fiber alignment [69]. 

 

The above methods usually involve the use of mechanically rotating objects. In the 

following method, namely ‘gap method’, the fiber alignment can be achieved without rotating 

collector. As shown in Figure 3-8, when two conductive electrodes are placed in parallel with 

each other, the electric field lines were split into two fractions toward both edges of the 

collectors. Since the electrospun jets tend to move along the distribution of the electrostatic field 

lines, the jets are attracted towards the collector edge and stretched across the gap. This 

induces the fiber alignment across the gap between the separate collectors. Mutual repulsion 

caused by residual charges of the deposited fibers is an additional factor for the fiber alignment. 

This enhances the parallel alignment of the fibers. However, the repulsion also means that the 

quantity of the collected fibers is limited. Thus, this method is not suitable to realize the thick 

layer of the electrospun fiber mat. 
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Figure 3-8. (a) Schematic illustration of the electrospinning with two parallel collector. (b) 

Distribution of electric field strength vectors between the needle and the collectors. (c) 

Electrostatic force exerted on the charged nanofiber [50].  

 

 

3.4 Inclined gap method 

3.4.1 Electrospinning setup and collector design 

In electrospinning, the electrically charged jets that erupt from a Taylor cone undergo 

stretching and travel toward objects with lower electric potential. As the jet moves along the 

electric field lines, it is accompanied by solvent evaporation, which results in the formation of 
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nanofibers on the target object. During the process of jet movement and stretching, the charged 

jets are influenced by the electrostatic field profile spread between the nozzle tip and the 

collecting target. When two conductive objects are placed at the collecting position in a parallel 

configuration, the electric field lines divided into two fractions can make the electrospun fibers 

orient themselves across the gap between the collectors [50]. 

In this research, a rearrangement of two conductive strips was created by employing an 

asymmetric configuration that included vertical and horizontal placements of the strips. Figure 3-

9(a) shows a schematic of the suggested electrospinning setup. The collector consisted of two 

thin aluminum strips (0.2 mm thickness). As one was fixed horizontally at the upper position and 

the other was anchored vertically at the lower position, there was an inclined gap between the 

two strips. The inclined angle and the gap width were determined to be 45° and 30 mm, 

respectively.  

 

 

Figure 3-9. Schematic diagram of the used electrospinning setup for the proposed inclined 
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gap method; (a) the setup for electrospinning, and (b) the nanofiber suspended sequentially 

across the inclined gap. 

 

A flat-tipped needle (0.29 mm inner diameter, stainless steel) was placed upwards at a 

distance from the horizontal strip (80 and 160 mm) and connected to a power supply in order to 

apply high voltage from 6 to 20 kV between the needle and the collector. A 10 ml syringe with 

the needle was equipped on a micro infusion, and the prepared PCL solutions were extruded 

through the needle at a constant rate of 0.6 ml/h. Uniaxially aligned nanofibers were suspended 

across both edges of the upper and lower strip and transferred onto a surface of slide glass (76 

× 26 mm2, 1 mm thickness). This process for collecting and transferring in sequence was 

repeated several times. As a result, quantitatively controlled densities of the nanofiber array 

were obtained depending on the number of transfers. 

 

3.4.2 Effect of inclined gap on fiber suspension 

It has been known that the influences of the electric field on the spun fiber morphology and 

collecting construction are extremely important[70-72]. As has been investigated previously[50, 

51, 61, 62], separating the conducting collector by void or insulating gap allows for the self-

alignment of fibers and stretching of spun jets due to the field line split towards both edges of 

the collectors. However, what is different here from the previous gap methods is the introduction 

of an inclined void gap between the two strips, where one is placed horizontally and the other is 

erected vertically at a lower location than the horizontal one.  
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Figure 3-10. Calculated equipotential lines and electric field strength vectors between the 

needle and the collectors; (a) symmetrical distribution of the electrostatic field in the region 

around the collectors with planar configuration. (b) asymmetrical distribution of the electrostatic 

field due to the modified configuration of the collectors. 

 

In order to verify the effect of such an asymmetrical configuration of the strips, the 

distribution and shape of the electrostatic field among the needle and the collectors were 

simulated by using the analysis software FEMLAB 3.0. Figure 3-10(a) and Figure 3-10(b) show 

the calculated results, including the equipotential lines and electric field strength vectors in the 

region around the needle and the collector. As shown in Figure 3-10(a), when the collectors 

were disposed in a planar way, the lines and vectors are symmetrically distributed along a 

center-line from the needle tip to the middle point of the gap. In this case, the charged as-spun 

fibers affected by the split electrostatic force towards each edge of the collector would settle 

almost simultaneously at both edges of the collector. While in the planar configuration of the 

collectors, one of the collectors was positioned endways lower than the other one, as shown in 
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Figure 3-10(b). As we get closer to the vicinity of the collectors in this case, the shape of the 

equipotential line becomes asymmetric for the center-line. Additionally, the vector arrows around 

the horizontal collector are formed stronger than those near the vertical one. Once the charged 

fiber has moved through the distributed vector field, one spot of the fiber will contact and be 

deposited onto the edge of the horizontal collector. After the prior settlement, the fiber is 

stretched out towards the edge of the vertically erected collector and a posterior deposition 

subsequently occurs in order to attain the final suspension across the gap [Figure 3-9(b)]. 

During the process of the charged fiber suspension, the electrostatic repulsion acting between 

the fibers can promote parallel alignment. When the configuration of the collectors has a height 

difference, such as that shown in Figure 3-9(b) and 3-10(b), it can provide the suspension of the 

aforementioned time difference, where the alignment is expected to be further enhanced due to 

more time and space needed for the alignment effect by the mutual repulsion between the 

fibers. Figure 3-11 shows the experimental results on the difference between the planar gap and 

the inclined gap. Both the straightness of the each fiber and the regularity of the fiber 

distribution in the case of the inclined gap [Figure 3-11(c) and (d)] appeared to be in better 

conditions than the planar case [Figure 3-11(a) and (b)].  

From these results, it could be considered that the more stretch and repulsion which were 

caused by the sequential settlement at the edges of the inclined gap exerted a favorable 

influence upon the fiber alignment and distribution. The electrospinning conditions included the 

applied voltage of 11 kV, solution concentration of 18 wt%, spinning distance of 160 mm, and 

spinning time of 40 sec. The enlarged images of the fiber arrays were observed by an optical 

microscope (i-Camscope, Sometech Vision). 
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Figure 3-11. Photographs of the collectors with the supended nanofibers on (a) the planar 

gap, and (c) the inclined gap. Optical micrographs of parts of the nanofiber arrays on (b) the 

planar gap, and (d) the inclined gap. 

 

Figure 3-12 compares the accumulated fibers on the surface of the horizontal collector and 

the suspended fibers across the inclined gap. As shown in Figure 3-12(a), the fibers deposited 

on the upper (horizontal) collector were randomly oriented like typical electrospun fibers. In 

contrast, the fibers anchored at both of the edges were well aligned in a direction across the gap 

[Figure 3-12(b)]. It is notable that the suspended nanofiber had a thinner diameter range 

(500~700 nm) than that of the directly deposited nanofiber (1~6 m). Such a drastic difference 

in the fiber diameter is attributed to the aforementioned stretch effect by the action of the 

electrostatic forces, which is the main factor for this fiber alignment technique. 
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Figure 3-12. SEM images of a) the randomly deposited nanofibers on the upper strip, and b) 

the uniaxially aligned nanofibers between the upper and lower strip edges. 

 

 

3.5 Requirements for stable collection 

Throughout the electrospinning technique to obtain the aligned nanofiber arrays along the 

inclined gap, one of the crucial requirements was the successful suspension of the fibers onto 

the collector gap. More specifically, the solidity of the spun jet became important when it 

reached the collector for the suspension. As the spun jet underwent the stretching process and 

moved toward the collector, it was accompanied by solvent evaporation so that the liquid jet 

solidified. Unless the sufficient solidification has progressed, the resultant nanofiber from the jet 

tends to be collapsed during the suspension process because such liquid-like fiber is not 

sufficiently strong enough to withstand the electrostatic stretching force between the gap and 

the weight itself, as well as repulsive interactions with the upcoming and neighboring fibers. 

Considering the experimental parameters that affect the fiber condition in the typical 

electrospinning process, two factors for the successful suspension can be pointed out. First, the 
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initial jet from the Taylor cone should be a relatively high concentration so that the spun fibers 

can hang onto the collector in a solid-like state. This is apparently related with the concentration 

of the material solution. The spinning distance, as well as the material parameter, from needle to 

collector should also be taken into account. In other words, the needle needs to be kept at a 

specific distance from the collector so that solvent evaporation sufficiently occurs. While a 

suitable case in Figure 3-13(a), Figure 3-13(b) and (c) show a worse case of less or unstable 

suspension due to the conditions of the low solution concentration and the short spinning 

distance, respectively.  

 

 

Figure 3-13. Photographs of (a) the successful suspension and the inappropriate 

suspensions due to (b) the low solution concentration (10 wt%, 160 mm distance) and (c) the 

short spinning distance (50 mm, 18 wt% concentration). 

 

In order to figure out appropriate parameters for the successful suspension, some spinning 

experiments were carried out under the several conditions shown in Table 3-4. As shown in 

Table 3-4, there was no or less suspension in the conditions of 10 wt% solution concentration, 

regardless of the spinning distance. This was attributed to insufficient solidification at the 
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moment of suspension onto the collector, as discussed above. On the other hand, too high level 

of a concentration, such as the case of 22 wt%, makes the Taylor cone unable to form and the 

spun jets to function, even at a higher voltage. The condition of 18 wt% provided well-

suspended and stable nanofibers in all the cases of short (80 mm) and long (160 mm) spinning 

distances. Furthermore, this condition, especially in the long spinning distance (160 mm), had a 

relatively wider range of applied voltage where stable formation and suspension of the 

nanofibers were more likely to occur than the lower concentration. Thus, from these results, 

subsequent studies used the conditions of 18 wt% concentration and 160 mm spinning distance. 

 

 

Table 3-4. Electrospinning conditions for the successful suspension. 
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CHAPTER IV  

CHARACTERIZATION OF ELECTROSPUN NANOFIBERS 

AND EFFECTS OF CELL GUIDANCE 

 

 

4.1 Introductory remarks 

The importance of nanostructured topography in view of cell biology has been recognized as 

one of the key factors in tissue engineering applications. Nano- or micro-architectures that can 

mimic natural extracellular matrix (ECM) environments have been employed in fabrication of 

functionalized scaffolds to enhance cellular responses, such as adhesion, migration, proliferation, 

and locomotion [73-75]. The ECM-like structure, a complex structural network with various 

fibrillar constituents, has been simulated by a wide variety of fabrication techniques which 

include MEMs-based lithographic methods, imprinting methods, and electrospinning methods [76, 

77].  

The electrospinning process, in particular, has advantages for fabricating cyto-compatible 

scaffolds thanks to its high efficiency and simplicity in producing submicron to nanometer scale 

fibers from a wide range of biomaterials. When a high electric potential is applied to the pendant 

drop of a polymer solution, the drop gets deformed into a cone shape, which is known as a 

Taylor cone. As a charged jet of the polymer solution is launched from the tip of the cone and 

elongated into thinner fibers, it gradually solidifies forming a nanofibrous mesh on the grounded 

collector. In typical electrospinning process, the nanofibers from the elongated jet are randomly 
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deposited on the collector due to jet bending and whipping caused by Columbic interaction 

between the jets [60]. Although these randomly assembled non-woven nanofiber meshes have a 

wide range of bio-applications [78-82], the recent interest in the electrospun nanofibers has 

been focused on ordered forms of the fibers, especially uniaxially aligned fiber arrays in light of 

tissue engineering applications for anisotropic tissues such as tendons and muscles. Fiber 

configuration with uniaxial orientation can be dictated by collector geometry, which has been 

proposed in various ways including using a rotating cylinder, a disk with a sharp edge, a spaced 

wire drum, and parallel electrodes as aforementioned.  

The potential of applying these alignment techniques to scaffold fabrication is significant in 

that it can provide a defined architecture to guide cellular behavior as well as nanoscaled 

dimensions for the biomimetic ECM for a wide range of cell lines such as fibroblasts, neuron cells, 

muscle cells, etc [83-88]. Many studies on the guidance effect have been conducted using 

lithographic techniques based on the MEMS process to realize precise construction of 

ridge/groove patterns for cell guidance [86, 88]. However, in terms of utilization of bio-

compatible materials for scaffold fabrication and the fabrication itself, the electrospun nanofiber 

array is far more advantageous than MEMS based processes. Based on the elctrospinning 

technique, some efforts have been made to apply the fiber alignment technique with a rotating 

disk collector [84]. Yet, due to the geometrical limitation of the disk edge, the employed 

technique makes it difficult to collect a wide area of fiber arrays. 

As mentioned in the previous chapter, the fabrication process of aligned electrospun 

nanofibers is realized by the proposed inclined gap method, which provided regular distribution 

and high order alignment of the nanofibers over a relatively wide area. The intrinsic instability of 

fiber landing in the electrospinning process was mitigated by employing two separate strips that 

were configured horizontally and vertically with the inclined gap. In this chapter, aligned 

nanofibrous scaffolds with different densities were prepared by employing multiple transfers of 
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the previously proposed process. Thanks to the favorable feature of void gap with suspended 

nanofibers, transfers of these fibers onto the other substrate can be easily accomplished. The 

repetitively overlapping transfer can provide quantitative control of the nanofiber densities in the 

scaffold in proportion to the number of transfers. Human dermal fibroblasts were cultured for 

seven days to observe the cell guidance effect and morphological changes on the scaffolds of 

different densities. Additionally, a bare PDMS substrate and a randomly deposited nanofiber 

mesh were tested to compare with the specimens of aligned nanofibers. 

 

 

4.2 Characteristics of fiber array 

4.2.1 Property of fiber alignment 

The resultant samples that were transferred with electrospun nanofibers were photographed 

using a scanning electron microscope (SEM; JSM-6300, JEOL) at an accelerated voltage of 10 kV 

after gold-sputtering onto the samples. Several images were captured by using the SEM side by 

side transversely for measuring the fiber alignment. Bent, looped, and discrete fibers were 

excluded and only straight fibers were analyzed. The angle distribution of each nanofiber was 

measured from the SEM images by using ImageTool 3.0 (University of Texas Health Science 

Center in San Antonio, USA). 
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Figure 4-1. SEM image for measurement of nanofiber alignment. 

 

Figure 4-1 gives a SEM image of a sectional region of the specimen on which the suspended 

fibers were transferred. The employed conditions were as the aforementioned including the 

solution concentration and the spinning distance. The applied voltage and the spinning time 

were 11 kV and 30 sec, respectively. Under these conditions, the morphologies of the most 

suspended fibers were uniformly well-aligned, straight, and continuous, while the broken or bent 

fibers were scarcely observed. From the serially taken SEM images, we quantified the fiber 

alignment by employing the angles between the desired direction (perpendicular to the edge 

lines of two strips) and the longitudinal axes of the fibers. 510 fibers were measured from 6 SEM 

images over an area of 14.1 × 1.60 mm2. Figure 4-2 gives the resultant histogram with the 

angle distribution of the nanofibers. All of the processed fibers were distributed within angles 
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ranging from -35° to 25°. It was found that more than 85% of the fibers were aligned within 

±10° of the preferred direction.  

 

 

Figure 4-2. Histogram of distribution of the angle between the longitudinal axis of the each 

fiber and the expected direction. 

 

In order to compare the corresponding results with the previous methods, we employed a 

parameter used by Liu et al. [62]. In their studies, the parameter which was originally suggested 

in the research field of fiber composite was adopted to the quantitative analysis of the 

electrospun nanofibers made by several techniques. According to this description, the fiber 

orientation parameter was expressed by 

                                  

(4.1) 
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where 

     

(4.2) 

 

and the fiber orientation distribution function   was defined by the probability of finding a 

fiber between 0 and  . 

  

(4.3)  

 

where   is an inclined angle of the individual fiber from the desired direction. If all fibers 

were perfectly oriented uniaxially, the orientation parameter pg  would be 1. Otherwise, it 

would be 0 for the random nanofiber distribution. From the way of this description, it was 

calculated that the pg  that corresponded to the results of Figure 4-2 was 0.96.  

There were two kinds of previous methods for electrospun nanofiber alignment, as stated 

above. According to an earlier investigation19, the orientation parameter pg  appeared up to 

about 0.8 in the method for rotating the drum collector. The rotating speed of the collector 

mainly affected the alignment property as was well known. The examples in the study included 

the measured parameters along the various linear velocities of the drum surface, such as 0.45 

for 4.19 m/s, 0.7 for 8.37 m/s, and 0.8 for 25.12 m/s. Meanwhile, another alignment technique, 

the gap method, which is a typical case for planar configuration of the electrodes, was mainly 

affected by the gap size. An increase of gap size improved the alignment quality. Along the 

description [89], the parameters for experimental results approximately varied from 0.65 to 0.9 

in the range of gap size (3 ~ 18 cm). 
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From these alignment techniques, we believe that the produced fiber array by the inclined 

gap method had a higher value of orientation parameter. This high order orientation (more than 

0.95) was similarly found under the other conditions of the applied voltage within the range 

from 9 kV to 15 kV. Furthermore, defective nanofibers, such as the looped and broken one, were 

observed much less. 

 

4.2.2 Density of aligned fiber array 

Typically in the electrospinning process, the longer the spinning time, the more increased 

fibers can be obtained. Therefore, a density of the spun fiber array is mainly dependent on the 

process time. Figure 4-3 shows several SEM images produced during the different collection 

times, as well as their corresponding densities and orientation parameters. The density was 

calculated as the number of nanofibers per horizontal length of 1 mm in the SEM image.  

As seen in Figure 4-3, well-aligned fiber formation was found to be present up to 30 sec of 

spinning time. At a longer collection time of 40 sec and 50 sec, the alignment properties of fiber 

arrays got worse. The loss in orientation with the denser arrays was possibly due to the 

reciprocal repulsion between the collected fibers. The presence of charges on the collected fibers 

tended to keep the spacing between the fibers during the collection on the gap. Compulsory 

landing onto the prior fiber array within the gap can cause misaligned deposition or direct the 

spun fibers towards a horizontal collector rather than the gap. In our case, 30 sec of collection 

time was selected as an optimum condition for the density of the aligned fiber array. After 30 sec, 

the alignment property was gradually lost, although the amount of fibers was increased. The 

preferred collection time provided approximately 30 fibers/mm. The value came to roughly 33 

m, which was converted at average spacing between the fibers. Considering the various 

applications related to the aligned nanofiber mats, this low density could cause limitations if it is 
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used as a valid structure.  

 

 

Figure 4-3. (a,b,c,d,e) SEM images of the aligned nanofiber array electrospun during 

different spinning times: 10, 20, 30, 40, and 50 sec, respectively (the scale bars are all 100 m). 

(f) Corresponding orientation parameters and values of densities. 

 

In this research, a higher density of the nanofiber array is accomplished without having the 

alignment property impaired by employing repetitive transfer. As shown in the previous chapter, 

the void space within the collector frame facilitated the transfer process. After transferring the 

firstly collected array of fibers onto a glass substrate, the heap of fibers that remained on the 

strips was removed. The same procedure producing the aligned electrospun nanofibers on the 

cleaned collector was repeatedly carried out, and thereafter, they were transferred onto the 

substrate with the prior fiber array. These repetitive procedures, including collection and transfer, 
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enabled the stacked nanofiber matrix to have a more increased density. The impairment of fiber 

alignment, as well as destruction between the mutual mats, was not found during the repetitive 

process (Figure 4-4). As shown in Figure 4-4, the average spacing between the fibers was 

reduced up to approximately 2 m when the number of transfers was increased up to 20. From 

these results shown in Figure 4-4, it can be expected that a quantitative control of the density of 

the aligned nanofiber matrix is quite practical because the amount of nanofibers for one crop 

was regularly quantified to some extent and the density of the matrix could be proportional to 

the multiple transfers. 

 

 

Figure 4-4. SEM images of the nanofiber arrays transferred repetitively; (a) 1 transfer, (b) 3 

transfers, (c) 10 transfers, and (d) 20 transfers. The scale bar on (a) is 20 m, and the other 

images are at the same magnification. 



 
 
CHAPTER IV  CHARACTERIZATION OF NANOFIBERS AND CELL GUIDANCE 
 

84 

4.3 Effects of controlled nanofiber array on cell guidance 

4.3.1 Experimental conditions 

Cell studies were performed using human dermal fibroblasts (6th and 10th passage) 

purchased from Lonza (Basal, Switzerland). The cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) (Lonza, Basal, Switzerland) containing 10% fetal bovine serum (FBS) 

supplemented with penicillin–streptomycin (Sigma, St. Louis, MO, USA). Cultures were incubated 

in a humidified atmosphere of 5% CO2 in air at 37℃. Prior to the cell seeding, all nanofiber 

scaffolds were sterilized in ethanol for 24 hours under ultraviolet irradiation, and were coated 

with fibronectin at 10 g/ml for 1 hour. Cells were harvested using trypsin/EDTA and 

resuspended in DMEM. Cells were then seeded onto the scaffolds at its density of 104 cells per 

scaffold, and incubated for 7 days in appropriate growth conditions. 

After experiments, cells were washed with the warmed DPBS and fixed for 15 min in 3.7 % 

formaldehyde. After DPBS washing, cells were permeabilized for 20 min in 2 % Triton X-100 and 

blocked in 3 % BSA (Invitrogen). Following three washes in PBS, cells were stained for F-actin 

cytoskeleton with Alexa-568-phalloidin (Molecular Probes) at 1:50 dilution in blocking buffer. 

After rinsing, the nuclei of the cells were labeled with DAPI (300 nM, D1306, Molecular Probes), 

and then they were finally mounted in a Vectashield (H-1000, Vector Laboratories) to minimize 

photobleaching. The cells were imaged using a Zeiss fluorescence microscope (Axiovert-200M, 

Zeiss) equipped with a CCD camera (Axiocam HSM, Zeiss) and image analysis software 

(Axiovision, Zeiss). 

After 7 days of cell culture, the stained cells were observed under a light microscope (Carl 

Zeiss Axiovert 200M) with phase contrast. 60 cells from each scaffold were randomly selected 

and the fluorescent images of actin and nuclei were analyzed using ImageTool 3.0 to measure 
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the extent of cell alignment. The orientation angle of cell long axis was measured with respect to 

the reference, which is the desired direction of fiber alignment, i.e. perpendicular axis to the 

collector edges. In addition, cell elongation factor Ef was calculated by [29]. The values of the 

elongation factor were calculated from 30 cells randomly selected from each scaffold. All 

statically analyses were performed using the Student’s t-test. Mean values from different 

independent experiments were calculated and expressed as the mean ± STD. 

 

4.3.2 Fabrication of the controlled nanofiber array 

Polymer solution was prepared by dissolving PCL in the mixture of MC and DMF at the 

concentration of 20 wt% defined as the proper condition in the previous chapter. The higher 

concentration than that of the typical electrospinning could allow the successful suspension 

within the inclined void gap due to the sufficiency of the fiber solidification. The PCL solution was 

electrospun from a 25-gauge needle connected to a power supply at an applied voltage of 14 kV. 

The infusion rate of solution through the needle was 0.6 ml/h. The randomly configured 

nanofiber mesh was obtained by simple electrospinning toward a thin PDMS membrane adhered 

to slide glass lying on the grounded metal plate. The spinning time was 2 min. 

The collector for the formation of unaxially aligned nanofibers consisted of the two separate 

aluminum strips (0.2 mm thickness), which were fixed horizontally and vertically at upper and 

lower position, respectively. This height difference between the strips formed the void space and 

the electrospun nanofibers were suspended along the void gap. The spinning distance from the 

needle tip to the upper strip was determined as 160 mm. The suspended nanofibers with 

uniaxial alignment were transferred onto a surface of the PDMS membrane adhered to the slide 

glass and both ends of the fiber array were anchored with Permount (Fisher Scientific, Pittsburgh, 

PA). 
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Figure 4-5. Comparison between results of the inclined and the planar gap collection: 

Photographs of the fiber arrays suspended on (a) the inclined gap collector and (b) the planar 

gap collector. Histograms of angle distribution of fiber alignment in the arrays transferred from (c) 

the inclined gap collector and (d) the planar gap collector. Homogeneous fiber arrays collected 

from the inclined gap by (e) single transfer and (f) 3 transfers. Inhomogeneous fiber arrays 

collected from the planar gap by (g) single transfer and (h) 3 transfers. Arrows indicate the 

inhomogeneous conditions of the fiber distributions. The scale bars are 10 mm (a, b) and 100 

m (e-h), respectively. 

 

As mentioned above, the modification of the configuration from a planar gap to an inclined 

gap allowed flexibility in time and space for improved alignment effect. As shown in Figure 4-5 

(a-d), fiber collection from the inclined gap serves to create better conditions in both the 

alignment of fiber angle and the homogeneity in fiber distribution whereas irregular distribution 

of nanofibers was observed in the case of the planar gap (marked by arrows in Figure 4-5(b, g, 

h)). These irregularities would be accumulative as the number of transfers increased, as shown 

in Figure 4-5 (g, h). Thus, since multiple transfers were necessary to create a nanofiber array of 

higher density, the use of inclined gap configuration would be more advantageous in generating 

more homogenous scaffolds 

For the one transferred fiber array, most of the intervals between the fibers appear to be 

several tens of micrometer which is larger than typical eukaryotic cells; for instance, the size of a 

fibroblast is about 10 m in length and 2 – 3 m in width [90]. Thus, a sub-ten-micrometer 

scale of fiber distance would be desired to ensure the interaction between the cell and the 

nanofibers. By employing multiple transfers on an inclined configuration, a reduction of fiber 

distance can be attained at approximately 2 m when 20 transfers were carried out [Figure 4-

4(d)]. As the quantity of nanofibers collected from single step electrospinning was nearly 
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invariable for the determined spinning time of 30 sec, the fiber quantity within the array would 

be proportional to the number of transfers. These results confirm the feasibility of the 

quantitative control of nanofibers using multi-transfers of nanofibers using the inclined 

configuration of collector [Figure 3(a, c, e, f)]. 

 

 

Figure 4-6. (a) Photograph of nanofibers collected on the upper strip and within the gap 

space. SEM images of (b) the microscale fibers deposited directly on the upper strip (The scale 

bar is 5 m), and (c) the sub-microscale fiber uniaxially suspended within the gap space (The 

scale bar is 2 m). 

 

While conventional electrospinning uses a simple electrically grounded collector without a 

gap, the collector used in our method comprises of two aluminum sheets separated by a gap. 

Because this collector configuration with a gap is designed such that as-spun fibers become 

suspended between both edges of the sheets, relatively rigid jets and fibers are preferred for 

stable suspension. When the initial concentration of the utilized solution is high, the whole jets 

and fibers throughout the spinning process exhibit more solid-like behavior. Thus, we increased 

the solution concentration to 20 wt% from the typical concentration of 10 – 12 wt%.  

One concern about increasing the solution concentration for better mechanical stability is its 

consequence in the increased diameter of the nanofibers [91]. In this process, however, the 

fiber diameter can be achieved within the sub-micrometer scale despite the relatively high 
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solution concentration. While the fiber deposited directly on the upper strip exhibited a thicker 

diameter [typically of the order of few micrometers as shown in Figure 4-6(b)], the nanofibers 

suspended between the edges of the upper and lower strips featured thinner diameters 

[typically ranging from 400 to 600 nm as shown in Figure 4-6(c)] suitable for tissue engineering 

applications. 

 

4.3.3 Effects of nanofibrous scaffold on cell guidance 

In order to test how substratum topographies generated from the transferred nanofiber 

scaffolds influence cell morphology, several specimens of different densities of nanofibers were 

prepared by varying number of transfers from 1, 5, to 20. Fibroblasts were seeded and cultured 

for seven days on each scaffold. As shown in Figure 4-7, the degree of cell alignment on the 

substrate transferred with nanofibers showed positive correlations with the density of fibers. 

Cells cultured on the scaffolds of 5 and 20 transfers show elongated morphology in the direction 

parallel to fiber alignment, whereas those on the scaffold of single transfer show little tendency 

of orientation.  

 

 

Figure 4-7. Phase contrast micrographs illustrating the cell alignment effect of different fiber 

arrays for (a) 1, (b) 3, and (c) 10 transfers. The scale bar on (a) is 100 m; the other images 

are at the same magnification. The arrows indicate the direction of the fiber orientation. 
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To visualize the interaction between the nanofibers and the cultured cells better, cells were 

fluorescently stained for nuclei and cytoskeletal actin with DAPI and rhodamine phalloidin, 

respectively. As a control, a bare PDMS substrate without nanofibers [Figure 4-8(a)] and the 

randomly-electrospun nanofiber scaffolds [Figure 4-8(b)] were used and compared with the 

aligned nanofiber substrates of different densities [Figure 4-8(c-e)]. All substrates were coated 

with fibronectin under the identified condition as described in Methods and Materials. The 

superimposed stack of phase contrast and fluorescent images for nuclei and actin show intimate 

association of cells with nanofibers [Figure 4-8(b-e)]. The case of randomly oriented fibers 

shown in Figure 4-8(b) indicates cells’ preference for the fibers to the smooth underlying surface. 

Often, cells stretch along the fiber length and are bounded by neighboring fibers. However, due 

to its randomness in orientation, neither of the cell alignment distribution nor the elongation 

morphology was any different from those cultured on the bare PDMS surface. 

On the scaffold with a single transfer [Figure 4-8(c)], the cell alignment (55% cells within 

±15° of the reference direction) and elongation (the average value of 5.8) were achieved to 

some extent, but a significant fraction of cells was shown to be unaffected by nanofibers due to 

large fiber-fiber distance. On the other hand, cells on the scaffolds with 5 and 20 transfers, as 

shown in Figures 4-8(d) and (e), showed clear alignment and elongation along the fibers. For 

the scaffolds with 5 transfers, 67% of cells aligned within ±15° of the reference direction and 

the average elongation factor was 6.8 whereas the scaffolds with 20 transfers showed 95% 

alignment and the elongation factor of 11.6. Most of the aligned cells span over more than two 

fibers across its body width. It is noteworthy that the cell guidance appeared to be more 

effective when the fiber spacing in the scaffold was similar to or smaller than the cell size. In 

other words, cell contact with the multiple guide topographies may be crucial for contact 

guidance effect. 
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Figure 4-8. Immunofluorescent staining images of cell morphologies and quantitative 

assessments of cell alignments on (a) bare PDMS substrate without fiber (Control), (b) fiber 

mesh deposited randomly (Random), (c) singly transferred substrate with aligned nanofibers (1 

tr), and multiply transferred substrate with (d) 5 (5 trs) and (e) 20 transfers (20 trs). Red and 

blue correspond to actin and nucleus, respectively. The scale bar on (a) is 50 m; the other 

images are at the same magnification. (f) Elongation factor (Ef ) of the each scaffold. Data 

shown as mean ± standard deviation (n = 30 in each scaffold, *** p < 0.001). 

 

Figure 7 shows enhanced formation of parallel actin stress fibers to nano-topologies on 

scaffolds of high density with 1-3 m fiber spacing. These results are consistent with those of 

previous studies [92], where the formation and orientation of actin stress fibers depend on the 

spacing between micro-topographic features.  
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Figure 4-8. Immunofluorescent staining images to visualize the formation of actin stress 

fiber on the substrate (a, b) with single transfer and (c, d) with 20 transfers. The scale bar on (a) 

is 30 m; the other images are at the same magnification. 

 

This study presents an initial effort to apply uniaxially aligned and uniformly distributed 

nanofibers to scaffold-based tissue engineering in a quantitatively controlled manner, and implies 

that a highly dense scaffold with nanofiber alignment would have functional significance. Besides 

as a dermal fibroblast used for wound healing strategy, the developed nanofiber scaffold could 

potentially contribute to other tissue engineering applications where tissue anisotropy is a critical 

factor (e.g., blood vessels, muscles and nerves) and thus other cell types should be tested for 

efficacy of the scaffolds. In addition, because of the material universality of the electrospinning 
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process, naturally occurring polymers such as collagens can be tested as scaffold materials. 
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CHAPTER V 

DUAL-SCALE HIERARCHICAL SCAFFOLD FABRICATION  

BY THERMAL FUSION PROCESS 

 

 

5.1 Introductory remarks 

Similarly to the FDM process, the process material undergoes twice through phase transition 

in the DPMD process. In the first step, the PCL granules being in solid state are heated so that 

they can be melted and extruded through the nozzle. The second phase transition takes place 

when the PCL extrudate in microfibrous form touches the substrate and quickly solidifies 

according to the temperature and the thermal conductivity of the substrate. After the deposition 

of the first layer, the successively deposited layers for the lamination process are deposited 

under the same conditions as the first layer deposition. The deposition of the second and 

subsequent layer is conducted on the top of the previously deposited layer. For the 3D assembly 

between the layers, the stable bonds between layers are required. Since self-adhesion of 

thermoplastic behavior is characterized as the fundamental mechanism for the laminated 

assembly, the thermal process conditions such as thermal boundary and temperature should be 

carefully determined. 

In this research, a hybrid process for fabrication of 3D scaffold, which consisted of a 

microfibrous structure fabricated using the DPMD and nanofibrous matrices by the 

electrospinning method, was tried. Insertion of the nanofiber mats between the layers of 3D 
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structure causes different conditions in the thermally self-bonding procedure from the case using 

DPMD alone. This chapter focuses on the characterization of the hybrid process so that it is 

feasible to fabricate the dual-scale hierarchical scaffold using both electrospinning and the DPMD 

process. 

 

 

5.2 Thermal fusion of microstructure with nanofibers 

5.2.1 Concept of thermal fusion 

The principle of thermally fused assembly is to deposit the extrudate in the molten state 

onto the previously deposited layer surface. In other words, self-adhesion of thermoplastic 

materials, in the presence of phase transition and prolonged exposure to high temperature, is 

the basic mechanism for the thermal fusion. Figure 5-1 illustrates one example of the combined 

fabrications using electrospinning and the DPMD process. 

In this case, the hybrid process consisted of a two-step sequential process. As a woodpile-

like structure was fabricated in a layer-by-layer approach, the nanofiber matrices were inserted 

between each layer of the microfibrous structure. The first microfiber layer of the scaffold is built 

via the DPMD process using the process parameter based on the target design. An electrospun 

nanofiber matrix was then spread onto the microfiber layer. Subsequent microfiber layers 

combined with nanofiber matrices were repeatedly laminated onto the previously combined 

layers so that a 3D hybrid structure could be fabricated. While the DPMD process was carried 

out, a microfilament in a molten state was extruded onto the prior unit layer. As it solidified for a 

few seconds, the microfilament adhered to a local region, where it came in contact with the prior 

unit layer. Every unit layer, therefore, was attached to the adjacent layers to form a complete 3D 
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hybrid structure.  

 

 

Figure 5-1. The hybrid scaffold containing microfibers and nanofiber matrices built via a 

combined process of DPMD and electrospinning.  

 

The concept of thermal fusion is illustrated in Figure 5-2. In the first step, the polymer melt 

extruded through the nozzle is deposited onto the surface of nanofiber mat. As the extrudate in 

the molten state contacts the nanofiber mat, conduction heat transfer to the nanofiber mat 

takes place. If the heat transfer in the mat is carried out at the sufficiently high temperature, the 

thermal fusion between the nanofiber and the micro-extrudate can be accomplished by melting 

and resolidification, namely self-adhesion process.   
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Figure 5-2. Principle of thermally-fused assembly between micro-extrudate and nanofiber 

mat. 

 

The self-adhesion or thermal interface healing is also important in other thermoplastic 

processing methods such as thermal extrusion, welding, and injection molding. According to 

Wool and coworkers [93], the degree of self-adhesion was defined as the ratio of interface 

mechanical strength to bulk material strength. It was based on the isothermal theory of interface 

healing and depended on 1/4 power of residence time (t) spent above a critical bonding 

temperature.  

 

(5.1) 

 

The healing function K has Arrhenius type dependence on the interface temperature iT  as 
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the following form. 
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, where A  and aE  are material constants indicating the rate of healing at the critical 

bond temperature and the activation energy for the healing process, R is the universal gas 

constant, and cT  is material-dependent critical bonding temperature. cT  can be identified as 

the melting temperature. From the relationship for the self-adhesion process (interface healing), 

it should be noted that the temperature condition is the most crucial factor in the bonding 

process. 

 

5.2.2 Numerical analysis of the fusion process 

In this section, thermal characteristics of the self-adhesion process between the micro-

extrudate and nanofiber mat are investigated by numerical analyses. During plotting molten 

polymer microfiber onto nanofiber mat, a thermal field through the depth of nanofiber bed is 

generated continuously in the plotting direction, as shown in Figure 5-3.  
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Figure 5-3. Schematics of thermal field during plotting a molten polymer. 

 

The thermal field depends on the initial temperature of the micro-extrudate, the elapsed 

time after the deposition, the thickness of nanofiber mat, and the material characteristics. The 

temperature distribution in the thermal field is directly related with the fusion between the 

microfiber and nanofiber array. The phenomenon of thermal field for the fusion is simulated 

using commercial software Flow 3D 9.0.  

The following assumptions were made in the finite element modeling: 

 

1. The deposited microfiber is initially in the molten state at the pre-determined 

temperature according to the nozzle temperature, and contacts the nanofiber mat in a 

single point at the initial step. 

2. The deposited materials do not flow in the direction of deposition or nozzle movement 
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so that the phenomenon can be simplified as the field of 2D cross-section. 

3. The nanofiber bed is a porous structure at the temperature of 293 K initially. The 

porosity is determined as approximately 30 % measured by pre-experiments. 

  

The physical properties of the PCL for thermal analysis are thermal conductivity, density, 

specific heat, latent heat, and melt viscosity. The material data are shown in Table 5-1. 

 

 

Table 5-1. Material properties of PCL for thermal analysis. 

 

In order to determine the analysis geometry of the thickness of the nanofiber bed, the 

cross-section of the nanofiber mat transferred repeatedly was observed as shown in Figure 5-4. 

When the number of transfers was 40, the thickness was approximately 11 m.  
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Figure 5-4. Cross-section of the nanofiber mat transferred repeatedly up to 40 transfers. 

 

The transient heat transfer analysis is carried out to estimate the temperature distribution in 

the nanofiber mat. According to the previous observations, the diameter of the microfiber 

deposited in the molten state and the thickness of the nanofiber mat are 400 m and 10 m, 

respectively. The thermal fusion procedures can be divided into three steps as shown in Figure 

5-5. 
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Figure 5-5. Three steps of the thermal fusion procedures; (a) Microfiber in a molten state is 

laid on the nanofiber mat having initially the room temperature. (b) Fused region is generated 

and penetrated into the nanofiber mat. (c) Fused assembly including microfiber and nanofiber 

mat is solidified as process time elapses. 

 

The thermal analyses are performed in different conditions of process temperatures by 

changing initial microfiber temperatures (60, 70, 80, and 100℃). Figure 5-6 shows temperature 

distribution at the time point where the region of thermal fusion in the nanofiber mat is 

maximized. According to the results, when the initial temperature of the microfiber is over 80℃, 
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the penetration can progress down to the bottom of the nanofiber mat. In the cases of the  

temperature lower than this level (such as 60 and 70℃), the penetration of fusion region does 

not reach out to the nanofiber mat. Thus, the fused assembly would not be expected in these 

cases of lower temperature. 

 

 

Figure 5-6. Penetration of thermal fusion region in different process temperatures. 

 

 

 

 



 
 
 
 

105 

5.3 3D integration by thermal fusion process 

5.3.1 Experimental results of thermal fusion 

In order to evaluate the practical fused region, the surface of the opposite side to the 

deposited microfiber was observed. As shown in Figure 5-7, it can be found that the fused region 

is broadened as the process temperature increases. In the case of 60℃, the fused region is 

hardly seen. This is in accordance with the results of thermal analysis in that the process 

temperature of 60℃ is so low that the penetration of fusion region can not reach the bottom of 

the nanofiber mat. When the fusion is not completed throughout the thickness like the case of 

Figure 5-7 (a), the delamination such as Figure 5-8(a) can happen. For the stable fused 

assembly, the fused region should be distributed down to the bottom of the mat.  

 

Figure 5-7. Thermally fused region at the bottom of nanofiber mats in the different process 
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temperatures including (a) 60℃, (b) 70℃, (c) 80℃, and (d) 100℃. 

 

Figure 5-8. (a) Delamination caused by the low process temperature of 60℃, (b) stable 

fusion at the process temperature of 100℃. 

 

5.3.2 3D integration with random and aligned nanofibers 

According to the proper process temperature of 100℃, the repetitive process including 

microfiber deposition and nanofiber transfer was performed. As the two step processes are 

carried out alternately, the resultant structure has both features of 3D geometry and inner nano-

topography, which provides favorable conditions for cell culture. Formation of the inserted 

nanofiber mats can be varied by the ways of transfer as illustrated in Figure 5-9. When the 

fundamental electrospinning is performed on the top of the ongoing structure [Figure 5-9 (a)], 

the electrospun fibers induced to the direction of the grounded bottom plate are formed on the 

surface of the structure with random configuration. As shown in Figure 5-9 (b), the suspended 

fibers with aligned configuration can be easily transferred onto the surface of the structure by 

the lift-up of the processing substrate with the structure. From two ways above, 3D integrated 

scaffolds were successfully fabricated with insertion of random and aligned nanofiber mat as 

shown in Figure 5-10. 
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Figure 5-9. Transfer methods of electrospun nanofibers with (a) random and (b) aligned 

configurations. 

 

 

Figure 5-10. 3D integrated scaffolds with insertion of electrospun nanofibers; (a, b) random 

nanofiber mat, (c, d) aligned nanofiber array. 
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5.3.3 Individualization of nanofiber scaffolds 

Additionally, as the plotting paths of DPMD process are arranged at the circumference of the 

nanofiber mats, an individualized nanofibrous scaffold can be obtained. The individual framed 

scaffolds with the nanofiber mats are successfully produced as shown in Figure 5-11. These 

scaffolds have a meaningful feature in that cell seeding and growth on each scaffold can be 

performed in the parallel way and thereafter 3D tissue formation can be achieved by assembly of 

the cell/fiber scaffolds. The detailed procedures and cell culture experiments are treated in the 

following chapter. 

 

 

Figure 5-11. Individual framed nanofiber scaffolds with aligned nanofiber array. (a,b) Closed 

type, (c,d) open type. 
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CHAPTER VI  

APPLICATIONS FOR 3D TISSUE FORMATION 

 

 

6.1 Introductory remarks 

A unique three-dimensional hybrid structures for tissue engineered scaffolds are produced 

by combining the direct polymer melt deposition (DPMD) and the various types of 

electrospinning technique with the random and aligned configurations. The hybrid scaffolds 

consist of three-dimensionally (3D) integrated microfibrous structures and nanfibrous matrices 

between the layers of the integrated structures. To verify the validity of the developed scaffolds 

from the viewpoint of tissue engineering application, the cell viability, morphology, distribution, 

and prolifeation in the scaffolds were determined as a function of time. Our results imply that 

this hybrid scaffold provides more preferable 3D biomimetic structure and many potential 

applications using various cell lines, such as chondrocyte, mesenchimal stem cell, and myoblast. 

 

 

6.2 3D scaffolds containing random fiber mesh 

6.2.1 Materials and process parameters 

Polycaprolactone (PCL, average Mn ca 80,000) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 

99+%) were supplied by Aldrich (Milwaukee, WI). Collagen type I (from calf skin) was 
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purchased from Sigma (St. Louis, MO). Dulbecco’s modified Eagle’s medium (DMEM) and 

phosphate-buffered saline (PBS) were from Gibco BRL (Gaithersburg, MD). The cell counting kit-

8 (CCK-8) was obtained from Dojindo Laboratories (Kumamoto, Japan). All other chemicals and 

reagents were of analytical grade. 

 

 

Figure 6-1. (a) Photograph of the overall 3D woodpile structure with dimensions of 9 mm x 

9 mm x 3.5 mm, (b) the hybrid basic unit layer composed of microfibers and the electrospun 

nanofibers matrix, (c, d) magnified images of (b). 

 

The inner diameter of the micro-nozzle connected to the syringe was 400 ㎛. It is possible 

to exchange it with another nozzle with a different inner diameter, allowing the fabrication of 
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various micro-scaled fibrous structures. The coiled heater that surrounds the syringe increases 

the temperature of the material in the syringe uniformly above the melting point. PCL, with a 

melting point of 57℃, was utilized in this material [33]. In order to extrude relatively low viscous 

polymer melts, the workable range of the processing temperature was determined to be 150 ± 

5℃, which is higher than the melting temperature of PCL. The viscosity of PCL is in the range of 

from 2000 to 3000 Pa∙s at the temperature around 150℃ and the low shear rate of 0 to 10 sec-

1 [34]. The applied air pressure for the dispensing process was determined to be 0.55 ± 0.05 

MPa. Nozzle velocity of the 3D micropositioning system was 1.4 mm/sec. The system fabricated 

three-dimensional woodpile-like micro structures composed of PCL microfibers as the base 

architecture of the hybrid scaffolds. 

For the electrospinnnig process, Two different polymer solutions were prepared by 

dissolving PCL and a PCL/collagen (6/4 weight ratio) blend in HFIP at a concentration of 10 wt% 

[35]. For the electrospinning process, these two types of solutions were electrospun from a 22-

gauge needle on a syringe pump at an infusion speed of 10 m/min for three minutes. The 

applied voltage was 18 kV and the grounded collector was placed 10 cm from the needle tip.   

Using the aforementioned parameters of the DPMD and electrospinning processes in the 

earlier chapters, 3D woodpile-shaped hybrid scaffolds could be fabricated. The scaffolds were 

designed with different compositions of the nanofiber matrix in order to evaluate the extent of 

the cell adhesion and proliferation. Figure 6-2 shows the three types of scaffolds used in these 

experiments.  

Type I was fabricated by only the DPMD process; this type utilized no nanofiber matrix but 

just the micro-scaled structure in the form of a cube. Type II scaffolds contained one nanofiber 

matrix in the middle of the microfiber layers and Type III scaffolds included three nanofiber 

matrices between each microfiber layer. For the inserted nanofiber matrices, the aforementioned 
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PCL/collagen mixed solution was used. 

 

 

Figure 6-2. Schematic diagrams and photographs of three types of the hybrid scaffolds used 

in the cell culture experiments: (a) Type I has no nanofiber matrix and only a PCL scaffold as a 

control specimen. PCL scaffolds combined with (b) a one layer PCL/collagen nanofiber matrix 

(Type II) and (c) a three-layer PCL/collagen nanofiber matrices (Type III). 

 

Cartilage was acquired from ankle and knee of 6-week-old cow under sterile conditions and 

chondrocytes were isolated by enzymatic digestion. The bovine chondrocytes were maintained in 

175-cm2 tissue culture flasks (BD Science, USA) at 37°C in a humidified 5% CO2 environmental 

incubator. Culture medium consisted of Dulbecco’s modified Eagle’s medium (DMEM, Grand 

Island, NY) supplemented with 10% (v/v) FBS, 100 units/ml penicillin, and 100 units/ml 

streptomycin. To prepare cell suspensions, the cultured cells were harvested using trypsin/EDTA, 

centrifuged at 1000 rpm for 5 min, and resuspended in DMEM. All specimens were sterilized by 
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UV irradiation for 2 h and in 70% ethanol for 12 h. Ethanol then was exchanged with an excess 

amount of deionized water and PBS. For homogeneous seeding distribution of the cells, the 

specimens were placed into a siliconized cylindrical tube, and 5 ml of cell suspensions were 

inoculated onto 10 specimens at a cell concentration of 1 × 104 cells/ml. This was followed by 

incubation with intermittent agitation for 3 min every half hour for a total of 4 h. Subsequently, 

the cell/scaffold constructs were washed with DMEM and transferred to siliconized 24-well 

culture plates containing culture medium for further incubation. At fixed time intervals, each 

specimen was harvested, washed with PBS three times, and added into 1 ml of fresh culture 

medium including the cell-counting kit-8 (CCK-8) solution, which generated an orange formazan 

product by cellular dehydrogenase. After incubation for 2 h, 100 µl of each sample was 

transferred to a 96-well plate to measure the absorbance at 450 nm using a microplate reader 

(Bio-Rad, Model 550). The number of cells was calculated from a calibration curve obtained from 

the wells that contained known numbers of viable cells. 

 

6.2.2 Effect of nanofibrous surface modification 

Contrary to the woodpile-shaped scaffold consisting of only PCL microfibers, there are two 

additional types of cell attachable surfaces in the inside of the hybrid scaffold. One is the surface 

composed of only nanofibers, and the other is the one composed of microfiber partially coated 

with nanofibers. Regarding the former type of surface, its advanced properties on cell activity 

have been reported in earlier researches [32, 35]. Before experiment with the 3D hybrid 

scaffolds, the pre-testing experiments were conducted with three groups of cylinder-shaped 

microfibers (Figure 6-3) to evaluate both effects of nanofiber coating on the microfiber and the 

use of PCL/collagen mixed solution as the electrospinning material.  
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Figure 6-3. Microfiber prepared for the pre-testing experiment: (a) a photograph of 

microfibers with lengths of ca. 10 mm and diameters of ca. 0.4 mm, (b) a schematic diagram of 

three different types of microfibers, only microfiber-only, surface-modified microfibers with PCL 

nanofibers and the PCL/collagen blend nanofibers, (c) SEM image of a microfiber coated with 

the PCL/collagen nanofibers, (d) magnified image of the PCL/collagen nanofibers deposited on 

the surface of a microfiber. 
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Figure 6-4. Cell proliferation pretest of bovine chondrocytes on different microfibers: 

microfiber-only, surface-modified microfibers with PCL nanofibers and the PCL/collagen blend 

nanofibers. 

 

The PCL microfibers were fabricated by the DPMD process, with a length of 10 ± 0.5 mm 

and a diameter of 350 ± 10 m. The first group of microfiber specimens was not treated and 

used as control specimens. The second and third groups were placed on aluminum plates where 

the PCL and PCL/collagen mix solutions were electrospun onto the microfibers. As a result, PCL 

microfibers were overspread with two types of nanofibers. Collagen is the most abundant 

extracellular protein in the human body and has been widely used for biomedical applications to 
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increase the incidence of cell-substratum interaction. Collagen is also an ampholyte polymer; it 

can increase the charge density of the spinning solution during the electrospinning process [36]. 

The diameters of the PCL and PCL/collagen (6/4) nanofibers were 431 ± 148 nm and 325 ± 128 

nm, respectively. The overall structure of the electrospun fibers can be strongly influenced by 

the rheological and electrical properties of the polymer solutions. It was found that when 

blending collagen with PCL (up to 40 wt%), the diameter of the electrospun nanofiber decreases, 

which is possibly due to reduction in viscosity and increase in charge density of the spinning 

solution, as reported earlier [23]. When blending over 40 wt%, beads or bead-on-string 

structures were easily observed, indicating insufficient entanglement of polymer chains due to 

immiscibility and phase separation between the two polymers. 

Micro- or nano-topographical features on the surface of biomaterials can control cellular 

behaviors such as adhesion, spreading, migration, proliferation, and differentiation to a large 

extent [37,38]. As shown in Figure 6-4, chondrocyte attachment and subsequent proliferation 

are enhanced on the surface-modified microfibers with electrospun nanofibers with respect to 

microfibers having a smooth surface. The number of cells on the surface-modified microfibers 

with the PCL nanofibers after 24 h was 48% higher compared to the cell number on the smooth 

microfibers. The cell number continued to increase 2.7 times the original number after 7 days in 

the culture. There are two possible explanations for this. First, cells can directly react to the 

nanofibrous topography. Manifold physical topographies including groove, ridge, pore, step, and 

node topographies were reported to have a significant effect on the type of cellular behavior 

according to the dimension of the topographies [24]. In other words, the nanofiber surface 

topography could be sensed by the seeded cells, inducing different cellular reactions with 

respect to the smooth surface. Second, the nanofibrous structure can enhance serum protein 

adsorption on the surface of the structures. As the initial cell-substrate interaction is induced by 

serum protein absorption to the substrate surface, an increase in the level of absorbed protein 
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can cause improvement of cell adhesion [39]. In addition, the chondrocyte number on the 

surface-modified microfibers with the PCL/collagen nanofibers was further increased, which was 

17% higher than those with the PCL nanofibers after seven days of culture. This indicates that 

collagen was exposed to the surface in contact with the cells which provided a more favorable 

environment for cell growth. As these experimental results suggest, there were significant 

improvements in terms of cell adhesion and proliferation when the PCL/collagen blend 

nanofibers were applied onto the microfiber surface. 

 

6.2.3 Cell proliferation in 3D scaffolds 

Figure 6-1 shows the appearance of the final 3D woodpile structure of the hybrid scaffold 

with its unit layers containing the nanofiber matrix. This figure also shows the horizontal front 

view of a basic unit layer, which is composed of a PCL microfibrous layer and a PCL/collagen 

nanofiber matrix. The overall 3D structure had these unit layers stacked up repeatedly. As 

observed in Figure 6-1 and 6-2, side channels could be generated by a repeated stacking 

process. In the later cell seeding experiment, penetration of the cell suspension and cell 

migration within the hybrid scaffold can occur through these side channels. 
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Figure 6-5. Cell proliferation assessment for a 10-day culture period on three types of final 

scaffolds. 

 

In the proliferation assessment (Figure 6-5), Type III scaffolds showed a 2.2-fold higher cell 

attachment rate after one day of culture and a 2.5-fold increase in the number of cells at the 

end of the proliferation period compared to Type I scaffolds. It was also observed that Type III 

scaffolds showed increased cell numbers that were 1.5 times higher compared to Type II 

scaffolds after 10 days of culture, resulting in greater hosting ability for the cell population. This 

result could be explained by the synergistic effect of several factors. Because of the inserted 

nanofibrous matrices, a quantitative increase of the cell-attachable surface area and the inner 
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topographical features influence contained quantity of viable cells in the 3D scaffold. Moreover, 

the use of PCL/collagen biocomposite as electrospun nanofibers improves cell-scaffold 

interaction, because the electrospun PCL/collagen nanofibers can have amide groups and 

hydrophilicity for the seeded cells to adhere and proliferate [35]. For these reasons, Type III 

scaffold that has nanofibrous mats in every unit layer could outperform the other types of 

scaffolds. These imply that it is possible to modulate the cell population in the scaffold by 

varying the number of nanofibrous mats so as to meet the requirements for regeneration of 

different types of tissues. After three days of culture, cell morphology for comparison of the Type 

I and Type III scaffolds using SEM was examined.  

 

 

Figure 6-6. SEM images of chondrocytes and scaffold interaction after three days in the 
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culture: (a) at the junction of two microfibers (arrows indicate attached chondrocytes) and (b) 

spread cell on the surface in a Type I scaffold, (c) the border of a microfiber (left) and a 

nanofiber matrix (right), and (d) chondrocytes layered on the nanofiber matrix in a Type III 

scaffold. 

 

As shown in Fig. 6-6, it was observed that attachment and proliferation of the chondrocytes 

occurred in the nano-textured hybrid scaffolds with the PCL/collagen electrospun nanofibers. 

Fewer cells attached to the Type I scaffold, whereas the Type II or Type III hybrid scaffolds 

resulted in a greater number of cells with extensive spreading in their shapes. 

 

 

6.3 3D scaffolds containing aligned fiber array 

6.3.1 Materials and scaffold fabrications 

In the previous sections, uniaxially aligned nanofiber array for a specific area can be 

fabricated in a transferrable manner. Figure 6-7 illustrates the transfer process of the collected 

fibers. The fiber array density for the single transfer is not sufficient to seize the seeded cell 

(mesenchymal stem cell) on the aligned nanofiber mats considering the cell size is 10 to 20 m. 

Thus, for the necessity of higher density, we tried to multiply the transfer of the aligned 

nanofibers. As the resultant fibers could be transferred repetitively, we could increase the 

density of the mats and reduce the spacing between the fibers. During the repetitive transfer, 

the formerly transferred fibers were not damaged and the resultant degree of fiber alignment 

was not disturbed. Using the DPMD process, a woodpile-like microfibrous structure was prepared 

for integration with the aligned nanofiber mats. The resulting diameters of the microfibers in the 
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structure are approximately 450 m. 

 

Figure 6-7. Repetitive process of DPMD and transfer of aligned nanofiber arrays and 

configuration of 3D scaffolds containing aligned nanofiber mats. 

 

As can be seen in Figure 6-7, the aligned nanofiber mats are inserted between each layer of 

the microfibrous structure by transfer of the mat before laminating subsequent microfiber layer. 
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When transferred onto the microfiber array, the nanofibers are periodically anchored to top of 

the microfiber array. The direction of the microfibrous array was the alternative of 45˚ or -45˚ to 

the direction of the aligned nanofibers.  

 

Figure 6-8. SEM image of 3D scaffold containing aligned nanofibers. 

 

This configuration allows the mats to be transferred onto all microfibrous layers stably and be 

anchored in the same way as all layers. Being similar to transfer onto the flat glass substrate, 

the transferred nanofibers sustained their alignment and continuity without significant 

disturbance (Figure 6-8). These hybrid structures containing aligned nanofibers were laminated 

successively in a layer-by-layer approach. While deposited by the DPMD process, the extruded 
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microfiber was in a semi-molten state and solidified for a few seconds. This brought about an 

adhesion of lower and upper structure which had an effect on successful lamination into a 3D 

structure as mentioned in previous section. Furthermore, it provided more robust in-situ fixation 

of the aligned nanofibers between microfiber layers due to the successive deposition. 

 

6.3.2 Effect of aligned nanofiber scaffold 

The property of cell adhesion and proliferation in each type of scaffold was evaluated by cell 

culture experiment. The specimens were prepared as illustrated in Figure 6-9. For a cell culture 

study, human mesenchymal stem cells (hMSCs, Lonza) were expanded in MSC basal medium 

(MSCBM, Lonza) supplemented with MSCGM Singlequots (Lonza). hMSCs were split at 

subconfluence and maintained in 75 cm2 tissue culture flasks (BD Science, USA) at 37 °C in a 

humidified 5% CO2 environmental incubator. All specimens were pre-incubated in human 

fibronectin (Sigma) dissolved in PBS (20 μg/ml) to facilitate cellular adhesion. To prepare cell 

suspensions, the monolayer-cultured cells were harvested using trypsin/EDTA, centrifuged at 

1000 rpm for 3 min and resuspended in MSCGM. Three hundred microliter aliquots of the cell 

suspensions (2 x 104 cells/ml) were inoculated to various types of the specimens sterilized by 

ultraviolet irradiation for 2 h and in 70% ethanol for 12 h. This was followed by static culture for 

pre-determined time points. In order to evaluate the adhered and proliferated cells within the 

scaffolds, cell counting kit-8 (CCK-8) was used along the protocol as mentioned in the previous 

section. 
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Figure 6-9. Preparation of various scaffolds in order to evaluate the 3D integration with 

aligned nanofibers. 

 

Figure 6-10. Adhesion property of Human mesenchymal stem cell into the various scaffolds. 

[Cell number differential = (cell number at initial seeding – cell number after 4 hr incubation ) / 



 
 
 
 

125 

cell number at initial seeding] 

 

 

Figure 6-11. Proliferation property of Human mesenchymal stem cell into the various 

scaffolds. 

 

Through the cell adhesion and proliferation tests, the hMSCs readily adhered and 

proliferated for up to 7 days in culture. As evaluated in the previous sections, it was confirmed 

that the nanofiber meshes (Random or Aligned) were more conductive to cell adhesion and 

proliferation than the scaffolds of the bare type (TCPS or RP). The cell adhesion and proliferation 

did not show significant differences between the aligned array and the random mesh. In the 

case of 3D scaffold integrated with the aligned nanofiber array of 2 layers, enhanced results of 
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cell proliferation are shown for all culture time points. Like the random nanofiber meshes 

embedded within 3D scaffold, the inserted nanofiber arrays provided additional areas for cell 

adhesion in 3D environment. This can be confirmed by comparing between the bare RP scaffold 

and the nanofiber-embedded scaffold. In the proliferation assessment at 14 day, the nanofiber-

embedded scaffold shows 2.1-fold higher cell proliferation rate compared to the bare scaffold 

without nanofiber.  

 

 

Figure 6-11. Proliferation results of 3D scaffolds containing aligned nanofiber mats (7 days 

after cell seeding). 

 

SEM images taken at 7 days in the growth medium showed the presence of hMSCs on the 

aligned nanofiber array embedded within the 3D scaffold (Figure 6-11). The cells were aligned 

on the uniaxially oriented nanofibers. It is confirmed that the cell alignment along the direction 

of fiber orientation can be accomplished even in the 3D environment. In the previous works for 

application of aligned nanofiber array, the supporting substrate was necessary because of 

fluttering behavior of the thin nanofiber. But in this case, all embedded nanofibers are fused and 

fixed with microfiber structures at the junctions between every layer. The transferability of the 

elctrospun nanofibers in this process allows that. As well as SEM images, immune-fluorescent 
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staining results show the cell alignment on the inserted nanofiber into the 3D scaffold as shown 

in Figure 6-12. 

 

 

Figure 6-12. Immunostaining results of hMSC actin fibers. 

 

 

6.4 Multilayer assembly of cell/fiber structures 

6.4.1 Layer-by-layer approach for 3D tissue formation 

As previously mentioned, the electrospun nanofiber structure has many advantages in 
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promoting cell growth, maintaining proper cell phenotype, and manipulating cell behavior along 

nanofiber orientation. However, some challenges in application of nanofiber to scaffold-based 

tissue engineering are recognized. The first one is a difficulty to create 3D structure, and the 

other one is too small pore to infiltrate cells into the nanofibrous meshes. In order to overcome 

these limitations, on-site layer-by-layer (L-b-L) approach has received attention for 3D tissue 

generation procedure with the assistance of electrospun nanofibers [94]. The procedure using 

electrospinning is illustrated in Figure 6-13.  

 

 

Figure 6-13. A schematic illustration of the L-b-L cell assembly while electrospinning [94]. 

 

The electrospun nanofibers were firstly deposited and then followed by cell seeding on top 

of the fibers. By repeating these steps, 3D cell/fiber integration was accomplished. Although this 

method solved the infiltration problem of electrospun nanofiber scaffold, some limitations still 
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remain. Since the cell seeding and nanofiber deposition are almost simultaneously performed in 

the same wet environment with culture medium, the residual solvent in the deposited fibers can 

cause cytotoxicity under variable process conditions. Furthermore, the versatile geometry or 

configuration such as fiber alignment cannot be expected due to the limited process condition. 

In this research, a parallel L-b-L approach for 3D cell/fiber integration is introduced to 

enlarge the application of electrospun nanofiber structure.  

 

6.4.2 Fabrication of single-layer scaffold  

The main ideas in this approach are preparation of individual cell/fiber structures, and 

assembly of them in layer-by-layer manner. In the first step, the individual fibrous scaffolds were 

fabricated as shown in Figure 6-14. The aligned nanofiber arrays are transferred onto PDMS 

substrate repeatedly up to 40 transfers. Thereafter, the microfiber depositions by DPMD process 

are performed in order to pack the nanofiber mat into the individual scaffold. The deposited 

structures also provide the bonding surface instead of nanofiber mats in the following process 

for assembly between the scaffolds. The package using DPMD process allows to individualize the 

nanofibrous scaffolds. Because the nanofiber has an extremely thin thickness and high aspect 

ratio, it is difficult to handle the scaffold composed of only nanofibers. The presence of 

packaging frameworks at both ends of the nanofiber mat give easy handling. Furthermore, since 

the whole procedure of cell culture is carried out in wet environment of culture medium liquid, 

the aligned nanofiber scaffold wouldn’t sustain its configuration if applied alone. Thus the 

frameworks are said to be necessary for the practical application of the electrospun nanofibrous 

tissue scaffold. 
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Figure 6-14. Package of the transferred nanofiber mats using DPMD process, and the 

resultant individual nanofiber scaffolds. 

 

6.4.3 Cell seeding and layer-by-layer assembly  

For the cell seeding, C2C12 murine myoblasts were cultured in DMEM supplemented with 10% 

fetal bovine serum and 1% penicillin/streptomycin, grown in a humidified incubator at 37 ℃, 

with 5% CO2. For differentiation induction, the growth medium was replaced with differentiation 
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media that consisted of DMEM, 5% horse serum and 1% penicillin/streptomycin after the grown 

cells are confluent. 

 

 

Figure 6-15. Schematics of cell seeding onto single-layer scaffold and layer-by-layer 

integration using collagen gel and polymer solution. (a) Preparation of unit scaffolds. (b) Cell 

seeding. (c) Assembly of cell/fiber construct using polymer solution and collagen gel. (d) Multi-

layer integration. 

 

The overall procedures for the layer-by-layer integration of cell/fiber structures are 
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illustrated in Figure 6-15. In the first step, the surface of the prepared nanofiber scaffold was 

coated with fibronectin for favorable cell adhesion, and the cells are seeded at 8000 cells/cm2 

onto each nanofiber scaffold. In five hours after the cell seeding, the cells adhere to the surface 

of the nanofiber scaffold as shown in Figure 6-16. The cells start to be elongated along the 

direction of fiber alignment. At this time, assembly between the cell-seeded scaffold is 

performed. As the scaffold is composed of the frameworks and the aligned nanofiber mat, the 

bonding processes for the assembly should be considered in different ways. One is use of 

polymer solution. Since the used solvent (methylene chloride) is highly volatile, the adhesion 

between polymer structures can be completed in a few minutes. Additionally, when the identical 

material is used as polymer in the solution (PCL in this case), high bonding strength between the 

structures is realized. In this experiment, the same PCL (MW 80,000) is dissolved in the 

methylene chloride at the concentration of 20 wt% for the bonding solution.  

 

 

Figure 6-16. Cells adhered on surface of aligned nanofiber scaffold in five hours after cell 

seeding. 
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Unlike the macro-scale frameworks, the bonding solution should not be applied to nanofiber 

part of the scaffold because the nanofiber structure containing the cells is very subtle and easily 

damaged. Use of hydrogel material can be regarded as an alternative way for the bonding 

method. The fibronectin-coated surface of the nanofiber part of the scaffold is feasible for the 

application of hydrogel assembly. Although the assembly with the hydrogel is not much strong, 

the bonding between frameworks is strong and stable enough to support the overall integrated 

cell/fiber structures. In this research, collagen gel solution (3D Collagen Culture Kit, Millipore) of 

100 l is dropped over the surface of nanofiber mat. The hydrophilic surface of nanofiber mat 

due to fibronectin coating allows well-spreading through the mat. the collagen solution on the 

scaffold is crosslinked in 37℃ incubator with humidified environment. Figure 6-17 shows the 

application of collagen gel to the cell/fiber scaffolds. 

 

 

Figure 6-17. Application of collagen gel to the cell/fiber scaffolds. 
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6.4.4 Multilayer tissue formation  

 

 

Figure 6-18. Confocal microscopic images of multilayer cell/fiber constructs of 1, 2, and 4 

layer integration. Red, green, and blue are electrospun nanofiber, actin, and nucleus, respectively. 

 

To form multilayer tissue construct with cells, a number of cell/fiber scaffolds with covered 

with collagen gel are prepared as mentioned above. After the collagen gelation and scaffold 
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assembly, two further 3 day incubation is carried out with 1, 2, and 4 layer constructs. The cell-

cultured constructs were stained with DAPI (for staining of nuclei) and FITC (for staining of actin) 

and examined under confocal microscope. To visualize the electrospun nanofibers in the 

construct, rhodamine (Sigma Aldrich) was added and mixed with the electrospinning solution at 

the weight ratio of 100:1 (PCL:rhodamine). It was found that the thickness of cell/fiber construct 

tends to be proportional to the number of integrated layers as shown in Figure 6-18. And the 

cultured cells are often found within the scaffolds. It implies that the product by the suggested 

method doesn’t have cell infiltration problem considered in the conventional electrospun 

scaffolds. 

To visualize the cross-section and thickness dimension of the integrated cell/fiber construct, 

histological analyses were carried out. Two types of samples (Figure 6-19) were prepared in 

order to evaluate the effect of parallel cell culture and assembly on the cell distribution through 

the depth of the constructs. One is the 4 layer-integrated cell/fiber construct, which is assembled 

after the cell seeding on the individual scaffold (40 transfers). The other is 1 layer cell/fiber 

construct, which includes the same quantity (total 160 trasnfers) of the nanofibers as the former 

one. Although the two types of specimens have an almost identical quantity of the nanofibers, 

the average thickness of the 4 layer-integrated cell/fiber construct [Figure 6-19(a)] is larger than 

the 1 layer construct [Figure 6-19(b)]. Additionally, the integrated cell/fiber construct such as 

Figure 6-19(a) would solve the intrinsic problems caused by too small dimension of nanofibrous 

mat, including cell infiltration, nutrient perfusion, and oxygen supply. 

The myoblasts grown on the nanofiber scaffolds are further cultured in differentiation media 

for up to 7 days. To examine the differentiation into myotube, fluorescence staining of myosin 

heavy chain (MHC) and F-actin were performed. As shown in Figure 6-20, the myoblasts formed 

multinucleated myofibers in the unidirection of nanofiber alignment.  
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                       (a)                                      (b) 

Figure 6-19. Light microscopic images of cross sections of multilayered cell/fiber constructs. 

(a) 4 layer integration of cell/fiber contructs and (b) single layer cell/fiber construct which have 

the same number of nanofibers as the case of (a). 

 

In addition, Figure 6-19 shows the assembly of striated sarcomeres in myotube, which is 

the principal characteristic of contractile and functional myotubes. After all the observations, this 

method can realize not only the regulation of cell alignment and myotube assembly along the 

controlled features of the electrospun nanofiber scaffold but also generate 3D culture platforms 

for possible application of the engineering skeletal muscle at the tissue level. 
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Figure 6-20. Myotube assembly on the aligned PCL nanofiber scaffold. Immunofluorescence 

staining of skeletal MHC was performed to show the myotubes at 7 days after the application of 

differentiation media. 

 

 

Figure 6-21. Immunofluorescence staining of anti-MHC showing a striated myotube on 

aligned nanofiber scaffold. 
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CHAPTER VII  

CONCLUSIONS 

 

 

In fabricating tissue engineered scaffold, both electrospinning and rapid prototyping (RP) 

methods have many advantages as effective technologies for each purposive approach. The 

electrospinning process provides a desirable characteristic in designing the scaffold mimicking 

the dimension and topology of natural extra-cellular matrix (ECM) fibers. With RP methods, the 

ECM mimicking structures are hardly realized due to their processing features of a relatively 

huge scale to a cell size. Compared to RP products, the electrospun fiber mesh has a particular 

small dimension of nano/micro scale generally in the similar range of ECM fibrils. On the other 

hand, the RP method has been regarded as the most promising technology to satisfy many of 

the general scaffold requirements. They can process a wide range of bio-applicable materials in 

a custom-made shape. The controllable features of inter- and intra- network of the 3D scaffold, 

such as pore size, shape, interconnectivity, and porosity, allows a favorable cell migration and 

nutrient perfusion compared to the scaffolds fabricated by the conventional methods. 

However, both fabrication methods have some limitations when considered alone. Though  

electrospinning has demonstrated its ability to fabricate nanofiber scaffolds that closely mimic 

the native ECM structure, the fabrication and practical use of 3D macroscale scaffolds remain a 

challenge due to the small diameter of the electrospun nanofibers. Furthermore, the relatively 

small pores of the nanofibrous scaffolds may cause poor conditions of cell infiltration, waste 

removal, and nutrient perfusion.  
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As mentioned above, a biologically desirable characteristic that should be considered in 

designing and fabricating the engineered scaffolds is mimicking the ECM fiber structure. However, 

this still remains a challenge for rapid prototyping fabrication methods. It is required to satisfy 

both of the three-dimensional bulk property in overall geometry of the scaffold and the surface 

micro- and nano-porosity (or roughness) for the creation of ECM-like environment where cell 

activation can be enhanced. Currently, each of electrospinning and RP method deals with its own 

specific range of dimension. In other words, the electrospun fibers can hardly exceed micro- or 

macro- scale to form a 3D scaffold, and the current RP process has a difficulty to reach its 

product scale down to nano-scale to simulate ECM structure. 

One possible solution to this problem from the scale difference is given by applying both 

processes of electrospinning and RP for scaffold fabrication. Basically, since the RP process 

employs a concept of layer-by-layer integration, electrospinning can be conducted between 

laminating procedures. As a result, a 3D dual-scale hierarchical construct containing nanofibers 

can be realized. In order to implement this new conceptive scaffold, the RP-based process, 

electrospinning for controlled configuration, and their combinatorial integration are developed 

and studied through this research. Some conclusions are derived as follows. 

 

A 3D moving polymer melt extrusion system, namely Direct Polymer Melt Deposition (DPMD) 

process, has been proposed to fabricate 3D regular porous structure for application as tissue 

engineering scaffolds. There are some distinct features superior to those of conventional 

methods for scaffold fabrication, such as fabrication of three-dimensional microstructures, highly 

accurate fabrication, control of geometry and porosity, wide range of available materials. As well 

as use of the structure itself, the developed scaffold can be used in combination with other 

material processing techniques for various biomedical applications. The applicability of the 

process and the resultant scaffold was shown in the several aforementioned cases such as the 
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3D framework incorporated with nanofilament/hMSC spheroids, the 3D scaffold coated with 

hydroxyapatite/collagen nanocomposite, and the membrane filled with hydrogel. Additionally, 

when a viscous polymer solution is used as the process material instead of polymer melt, the 

smaller thickness of the deposited structure down to several ten micrometers can be realized. 

The resultant sheet-like structure can be applied to the post-surgical anti-adhesion membrane. 

 

While the electrospun nanofibers with random configuration can be achieved under 

appropriate combination of the relevant process parameters, the fiber alignment technique 

allows more considerations. In this research, a high-performance of uniaxial alignment of 

electrospun nanofibers was realized by introducing an inclined gap into dual collectors that 

consisted of two conductive strips. Since the two strips that were configured horizontally and 

vertically had a height difference from the inclined gap, the electrospun nanofibers were 

sequentially suspended across the edges of strips in a well-aligned and regularly-distributed form. 

Some parameters, such as concentration of solution, applied voltage, and spinning distance were 

considered for the successful suspension and formation of the aligned electrospun fibers. The 

method could improve the properties of nanofiber alignment and allow easy transfer onto other 

solid substrates or devices. The alignment technique employed Polycaprolactone (PCL), which 

resulted in continuous and well-aligned nanofibers with diameters ranging from 500-700 nm. 

Furthermore, the repetitive transfer is suggested in order to achieve a higher density of aligned 

nanofiber arrays.  

 

As mentioned above, the uniaxially electrospun nanofiber arrays were constructed with 

quantitatively controlled density. As a single transfer of the nanofibers collected from the inclined 

gap provided a well-aligned and regularly-distributed form, the developed nanofiber array could 

be applied to tissue scaffold by employing multiple transfers. The fiber density within a scaffold 
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could be controlled in proportion to the number of transfers. Diameters of the nanofibers in the 

scaffold were in a sub-micrometer range, which means that the fibers were appropriate to utilize 

as nano-topographic features. In regard to the contact guidance along the aligned direction of 

the nanofibers, favorable interactions between the fibroblasts and the developed scaffold, 

especially in a highly dense scaffold with the fiber spacing reduced down to less than the cell 

size, were revealed in observation of cell morphologies.  

 

A nano- and micro- hybrid process incorporating direct polymer melt deposition (DPMD) and 

an electrospinning process was developed. It can be successfully applied to produce highly 

functionalized three-dimensional scaffolds with an open porous network, a controllable shape, 

and a biocompatible nanofibrous inner architecture. The main advantage of this hybrid scaffold 

over the other scaffolds is its three-dimensional characteristics simulated as a 3D fibrous 

extracellular environment. These technical results were achieved by inserting PCL/collagen 

biocomposite nanofiber matrices into the microfibrous structures. Specifically, the RP method 

was used in conjunction with the functional electrospinning process in an effort to realize a 3D 

fashioned ECM-like structure. It was also clearly demonstrated that the presence of the inserted 

nanofiber matrices served to improve the properties of cell adhesion and proliferation. As well as 

the use of the typical random fiber mesh, the uniaxially aligned nanofiber array could be applied 

to the hybrid scaffold due to the transferability of the suggested collecting method. The 

developed integration skill using the dual process also facilitates the layer-by-layer approach for 

3D tissue formation. As the individual nanofiber scaffolds are prepared by package using the 

DPMD process, multilayer assembly of cell/fiber scaffolds can be realized employing a polymer 

solution and a collagen gel as the bonding agents. This technique presented an enlarged 

application to 3D muscle tissue engineering. 
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In the future work, in order to further improve the dual-scale hierarchical scaffold, it is 

recommended that three major items are investigated. The first one is related to the customized 

scaffold design and realization for practical implantation according to CAD/CAM based 

anatomical data such as CT or MRI images. The second one is to test of other natural or 

synthetic biomaterials or combinations of these functional materials. As mentioned above, since 

the developed hybrid process can possibly utilize a wide range of materials, it can be expected 

that other novel scaffolds satisfying diverse purposes in the tissue engineering field can be 

produced using other functional biomaterials. And finally, further studies with other cell types 

utilizing more quantitative biochemical assays would be required to evaluate the feasibility of the 

developed scaffolds to tissue engineering applications. 
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要 約 文 

전기방사 나노섬유를 포함한 3차원 인공지지체 개발 및 

조직 재생으로의 적용 

 

조직공학용 지지체 (Tissue engineering scaffold)는 그 표면 또는 내부에 세포가 

파종되어 일정 시간 후 복합화된 상태에서 생체에 손상된 조직이나 장기에 

적용하고 이를 복원, 재생, 또는 대체하기 위한 수단으로서 사용되는 구조물을 

지칭한다. 조직공학용 지지체는 기본적으로 다공성 구조물로 구성되어 있고 각각의 

공극이 서로 연결됨에 따라 영양분의 공급, 세포 사이에서의 대사물질 및 산소, 

체액 등의 전달, 혈관신생 등이 원활히 이루워져야 한다. 또한 구성 고분자 재료의 

생분해성으로 인하여 세포와 복합체를 이루어 체내에 이식된 후에 세포의 증식과 

함께 분해되어 없어지게 된다. 최근 이러한 생분해성 고분자 지지체를 제작하는 

방법으로 형상제어의 수단을 동반하여 CAD/CAM 기반의 쾌속조형 (Rapid 

Prototyping) 기술이 적용되고 있다.  

 

본 연구에서는 압축공기의 적용을 통해 생체 고분자를 직접 용융 분사하여 

3차원 구조물을 제작하는 쾌속조형 기반의 3차원 조형 공정을 개발하였다. 본 

공정을 통하여 제작된 3차원 지지체는 기능성 생체 활성물질의 표면 개질을 

통하여 기능성 향상을 확인하였고, 적층시 공극사이에 앞서 개발된 구형 세포 

집합체를 적용함으로써 조직재생의 응용을 시도하였다. 또한 본 공정에서의 재료를 

용융 고분자가 아닌 휘발성 용매에 녹인 고분자 용액으로 대체함으로써 얇은 

막형태의 구조를 제작하였다. 이는 하이드로젤 개질을 통하여 수술후 유착방지막의 

활용을 검증 하였다.  
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또한 개발된 공정이 적층 방식인 점을 활용하여 적층면 사이에 전기방사 

나노섬유를 형성함으로써 3차원 조직공학용 지지체로서의 기능성을 극대화하였다. 

일반적으로 쾌속조형을 통한 다공성 지지체가 갖는 매끄러운 표면과 세포 크기에 

비해 상대적으로 큰 스케일의 한계점을 이러한 나노섬유 적용을 통해 보완하였다. 

다른 측면으로 나노/마이크로 토포그래피에 의해 그 기능성이 여러 방면으로 

검증된 나노섬유를 3차원 구조화하였다는 점에서 중요한 의미를 갖는다. 

 

3차원 구조에 내재하는 전기방사 나노섬유 메쉬의 경우 기본적인 형태로서 

랜덤하게 쌓이는 구조를 쾌속조형 공정과 교대로 적층하여 구성해볼 수 있으며 

이를 연골세포 배양을 통하여 기능성을 검증하였다. 한편 체내의 조직 중에는 

골격근, 인대, 건과 같이 조직내 세포의 형태가 일정한 방향으로 배향되어 있는 

조직들이 있다. 이러한 조직에 적용되기 위한 지지체 역시 세포의 가이드 역할이 

될 수 있도록 형태가 일정한 방향으로 배향되어 있는 것이 바람직하다.  

 

본 연구에서는 넓은 면적에 활용 될 수 있는 전사 가능한 전기방사 나노섬유 

배향 방법을 개발하여 적용하였다. 개발된 방법을 통한 나노섬유 매트의 경우 

나노섬유의 양, 즉 밀도가 정량적으로 제어 가능하며 다른 구조 표면에 적용할 수 

있는 장점이 있다. 정량적으로 밀도를 다르게 구성하여 섬유아세포의 배향효과를 

통해 개발된 정렬방법의 이점을 검증하였다. 이를 앞서 설명된 바와 같이 마이크로 

구조와 교대적층을 통해 3차원 구조화 하여 간엽줄기세포 배양을 통해 응용성을 

검토하였다. 한편 마이크로 구조를 나노섬유의 틀로서 형성하여 패키지화 함으로써 

세포와 나노섬유 혼합 구조를 구현하였다. 개별화 되어있는 나노섬유 지지체에 

근아세포를 파종하고 이를 일정시간 배양 후 콜라겐 젤 및 고분자 용액으로 

적층함으로써 효율적인 조직 재생방법을 제안하였다.  
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