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ABSTRACT

Flows around high speed bodies in water are
subject to cavitation. 1In general, cavitation
is to be avoided because it represents a loss
of useful energy and can result in structural
damage. In some cases, however, controlled
cavitation can be beneficial. For instance, a
thin supercavitation bubble surrounding a
torpedo may reduce skin friction drag, or cav-
itation can be used in underwater acoustic
generators.

In this paper a new computational model is
described that has been implemented in a com-
mercial computer program that produces tran-
sient, three-dimensional solutions of the
Navier-Stokes equations.

Examples are presented that cover a wide
range of applications involving cavitation
phenomena. These include sloshing, flows over
torpedo-shaped bodies, and water surface re-
entry problems. Comparisons with experimental
data have been made for those examples where
suitable data is available.

INTRODUCTION

Cavitation is associated with the appear-
ance of vapor or gas bubbles in flowing lig-
uids.[1] As a rule, cavitation is the term
used when vapor or gas bubbles. develop because
of a lowering of the fluid pressure. Boiling,
on the other hand, is usually the term used to
describe the appearance of bubbles when the
temperature of the fluid is raised. In either
case the molecular processes are the same;
dissolved gases come out of solution and/or
the liquid undergoes a liquid-to-vapor phase
change. 1In practice, the possibility of cavi-
tation is usually characterized by a Cavita-
tion Number,

K = (p.,-pc)/(%puz)

where p, is some reference pressure, pP. is the

vapor pressure and u is some reference veloc-
ity.

Most often cavitation is to be avoided
because it is a sink of energy and may even
result in structural damage. However, in some
cases controlled cavitation may be useful, for
instance, in reducing skin friction drag on
high speed torpedos or for inducing locally
high pressures/temperatures for certain chemi-

cal reactions in liquid mixtures.[2]

In this paper we describe a new cavitation
model that has been added to the commercial
FLOW-3D computer program.[3] The model is
most useful for supercavitating flows, that
is, for flows where the cavitation bubbles
become large enough to be easily resolved by
one or more cells within a computational grid.

This new model makes use of an existing
bubble-void model in FLOW-3D but differs from
that model in several important ways. Most
importantly, in cavitation we require a mecha-
nism for the automatic formation of new
bubbles when the pressure falls below a
specified level (i.e., below the cavitation or
saturation pressure). Conversely, cavitation
bubbles can disappear when the surrounding
pressure exceeds the saturation pressure. We
shall see in the illustrative examples why
this distinction is crucial.

MODELING CONSIDERATIONS
The FLOW-3D Program

The computational platform for this work is
a commercial program, FLOW-3D, marketed by
Flow Science, Inc. FLOW-3D, which can be pur-

chased, leased, or accessed at computer ser-
vice bureaus, is a general purpose fluid flow

- and heat transfer package.

. The FLOW-3D program is based on a finite-
difference solution algorithm for the three-




dimensional, time-dependent Navier-Stokes
equations. A novel feature of the code is its
ability to represent extremely complicated
flows containing one or more free surfaces.
This feature, which is based on the Volume-of-
Fluid (VOF) computational technique,[4] is
essential for modeling supercavitation
phenomena.

Free surfaces in the present context are
treated as sharp interfaces separating liquid
and gas regions. The gas regions in FLOW-3D
can be regions of fixed pressure (i.e.,
regions having no inertia and connected to
"infinite" reservoirs capable of keeping the
gas pressure at a constant value). Alterna-
tively, the gas regions in FLOW-3D can be
finite regions in which an adiabatic y-law
pressure/volume relation exists.

The code does not have a capability to
simultaneously model the dynamics of both gas
and liquid or to model dispersed two-phase
mixtures of gas and liquid. This is an impor-
tant limitation with respect to cavitation.
For instance, it means that the cavitation
model to be described is primarily for super-
cavitating situations where cavitation bubbles
are large enough to be resolved by the
computational grid. It also means that these
"bubbles" are treated as constant pressure
regions once they are identified in the compu-
tations.

No details of the basic computational algo-
rithm are given here. Reference 4 should be
consulted for this purpose as it describes the
general computational approach used in
FLOW-3D.
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A number of simplifying assumptions have
been made in adding the new cavitation model
to FLOW-3D. First, we assume that the liquid
is incompressible and that the exchange of
vapor (or gas) with the liquid is sufficiently
rapid that bubbles always have pressures equal
to the cavitation pressure. 1In particular, a
change in volume of a cavitation bubble does
not change its pressure. When a computational
grid cell has a pressure below the cavitation
pressure, a vapor bubble must be allowed to
form. This formation is modeled by allowing
the velocity divergence to become positive by
an amount proportional to how far the pressure
is below the cavitation pressure,

Veu=-(p-p/T (1)

where p. is the cavitation pressure (a con-

stant) and T is a relaxation time. The rate
of formation has a time constant that is
approximately equal to five computational time
steps, i.e., T=356 In effect, this allows
more fluid to flow out of a computational grid
cell than is consistent with the assumption of
incompressibility. When this happens a void

region begins to develop, but it is not iden-
tified as a distinct void region in the code
until it reaches a size large enough to occupy
at least one entire computational cell.

The vapor production rate, Eq. (1), is only
active during the initial formation of a vapor
bubble. Once the liquid volume fraction of a
cell is below 0.99, the cell pressure is then
fixed at the cavitation pressure. Cells
within the fluid and having a volume fraction
less than 0.99 are treated fixed pressure
cells. These cells will have, in general,
nonzero velocity divergences.

It should be emphasized that wvapor cannot
have a velocity different from that of the
liquid. Furthermore, in large vapor regions
that are resolved by the grid there is no
vapor momentum as these regions are modeled
strictly as regions of constant pressure. In
other words, the current cavitation model is
not a complete two-phase flow model. This is
an important approximation that must be kept
in mind when using FLOW-3D to model cavitation
phenomena. One example of this limitation
will be pointed out in connection with an
example of supercavitation behind a circular
disk.
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Since p. is an absolute pressure, it is
important to define computational problems
that have some reference pressure set either
through an existing free surface pressure or
through a specified boundary pressure.

It is possible to initialize problems with
free surface (gas) pressures that are differ-
ent from the cavitation pressure as long as
this pressure is not less than the cavitation
pressure. Such void regions will maintain
their pressures using the code's void-pressure
models as long as they remain distinct
regions. Of course, any void region, whether
a cavitation bubble or not, that intersects a
specified pressure boundary will immediately
have the same pressure as the boundary since
the boundary is assumed connected to an infi-
nite reservoir.

Finally, we should note that the cavitation
model is not allowed to operate during the
first five time cycles of a calculation. This
restriction gives time for inconsistent or
arbitrary initial pressures to settle down to
realistic values before any tests for cavita-
tion are made. For example, in the flow
around a disk example described below, the
initial impulsive start given to the flow
introduces extreme and unrealistic pressure
transients that last for two or three computa-
tional time cycles.

ILLUSTRATIVE PROBLEMS

In this section we describe several example
problems that illustrate the capabilities of
the new model. We begin with cavitation orig-
inating at a constriction in a pipe.




o conateictad pi

Figure 1 shows a sketch of the problem we
wish to solve. Non-dimensional units are used
in which the pipe diameter is 1.0 unit. At
the constriction the minimum flow area is 36%
of the full pipe area. A uniform flow of
incompressible liquid with unit velocity is
specified at the upstream boundary of the
pipe. The fluid density is 1.0 and is assumed
to have a low enough viscosity to be treat as
inviscid. The outflow boundary is specified
as a constant pressure boundary with a pres-
sure of 10.0.

Bernoulli's relation indicates a pressure
reduction at the constriction of about 3.86.
This suggests that the setting of a cavitation
pressure slightly above 6.14 should result in
a relatively small region of cavitation.

Figure 2 shows a time sequence of computed
results obtained with the FLOW-3D program.
For this calculation 10 mesh zones were used
to resolve the pipe radius and 50 zones were
used axially. The zone size was smallest in
the region of the constriction in order to
better resolve any cavitation that might
occur. (The plots show a full cross section,
but only one symmetric half was actually com-
puted.)

The computed results indicate an unsteady
flow with a cavitation bubble initially grow-
ing from the pipe wall at a location slightly
downstream from the maximum constriction. The
cavitation bubble grows rapidly at first,
reaches a maximum size, then collapses. This
growth and collapse process repeats itself in
a cyclic manner.

Although it was originally anticipated that
a steady flow result would be computed, there
is experimental confirmation for this type of
unsteady behavior.[5] For instance, Fig. 3
shows a series of frames from a motion picture
taken of cavitating flow in a constricted pipe
similar to that used in the computations.
This figure has been reproduced from page 84
of Ref. 5.

An explanation of why the flow is cyclic
can be obtained from an examination of the
computed results. Cavitation first develops
at the pipe wall, just downstream from the
minimum area, where the pressure is a minimum.
As the cavitation vapor bubble grows, the flow
separates from the pipe wall leaving a region
of relatively slow flow near the wall in the
wake of the bubble, see Fig. 4.

Downstream from the constriction there must
be some pressure recovery as the flow spreads
out over the full pipe cross section. When
this happens there is an adverse pressure gra-
dient along the pipe wall that drives flows
back upstream into the vapor bubble.
Eventually the reverse flow causes the bubble
to completely collapse.

After the collapse there is a short period
while the flow adjusts to its new state (i.e.,
no flow separation immediately downstream of
the constriction) before beginning the growth
of a new vapor bubble.

This example is a good illustration of the
usefulness of computational modeling. As pre-
viously mentioned, we had anticipated a steady
flow result, but an examination of the
computed result provides a ready explanation
for the unsteady behavior that was obtained.
Of course, the subsequent uncovering of exper-
imental confirmation is comforting, particu-
larly when using a newly developed
computational model!

Two general observations about this example
are worth noting. First, the initial forma-
tion of the vapor bubble is a result of Egq.
(1), which allows for a nonzero velocity
divergence (i.e., vapor production). The com-
puted results cannot otherwise be duplicated
with the constant pressure bubble model that
was originally in the FLOW-3D program.

Secondly, when the cavitation pressure is
sufficiently increased, resulting in a large
enough vapor bubble to reach the outflow
boundary, the problem changes in a fundamental
way. If the bubble reaches the downstream
boundary, it must assume the pressure of the
boundary which is assumed connected to a fixed
pressure reservoir. Once this happens, the
computational problem cannot recover to a pure
vapor bubble situation.

The computational (CPU) time required for a
problem time of 15.0 units was 3.8 hours on a
MicroVAX II computer. This time period cov-
ered several oscillations of the growth and
collapse of the cavitation bubble.
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This example was selected as a test case
because there exists some qualitative exper-
imental data with which to make a comparison.
Unfortunately, the data consists of a single
photograph, Plate 18, from the book FLUID
DYNAMICS by G. K. Batchelor.[6] Nevertheless,
the photograph is clear and does provide a
useful benchmark test.

The problem consists of a thin circular
disk mounted on an axisymmetric rod that
extends rearward with respect to the flow, see
Fig. 5. The physical conditions for this
problem are specified in terms of the nondi-
mensional parameter K=0.19, the cavitation
number. Since only this nondimensional number
was given, we have used dimensionless quanti-
ties to define our computational model; i.e.,
a disk diameter of 1.0, a flow speed of 1.0,
and a fluid density of 1.0. The cavitation
pressure was set at 0.0, which leaves the
ambient pressure to be chosen to give the
desired cavitation number, pgo=K/2, or in this
example po,=0.095.

- tati 1 Model
A mesh consisting of 20 radial cells and 50
axial cells was used to define the computa-
tional region that had a radius of 2.0 and a
length of 7.5 units. The disk was modeled
with the baffle capability in FLOW-3D, while
the support rod was defined as an obstacle.
The rod's diameter was guessed to be 0.4 times
the disk diameter (an accurate measurement
from the photo was not possible, but it is




unlikely that the exact diameter is impor-
tant). A constant axial flow of unit magni-
tude was specified to enter the bottom of the
mesh. At the outer radial side and the top
(outflow) boundaries a constant ambient pres-
sure condition was used.

Computational Results

Development of the vapor region with time
is illustrated in Fig. 6. 1In these plots a
full cross section is plotted even though only
one symmetric half is actually computed. The
flow is started impulsively and the cavity
immediately begins to grow behind the outer
edge of the disk. By t=6.0 the outer surface
of the cavity is essentially stationary in
time except for the base region where the flow
closes on the support rod. This can be seen,
for example, by observing that the upstream
portion of the cavity at t=6.0 is nearly iden-
tical with that at t=10.0 in Fig. 7.

A comparison with data is also given in
Fig. 7 where the bold black dots indicate the
location of the cavity boundary as measured
from the Batchelor photograph. Excellent
agreement is observed over most of the cavity.

In a preliminary calculation using a
coarser grid, the radial diameter of the cav-
ity was slightly underpredicted. To obtain
agreement it was necessary to increase the
resolution near the edge of the disk in order
to get the proper angle for flow leaving the
edge.

The most interesting region is at the rear
end of the cavity. This region is not sta-
tionary as can be seen by comparing the Fig. 7
result with the flow configuration at t=20.0
shown in Fig. 8. It is interesting to note
Batchelor's remarks about the experimental
observation of this region.[6] He states
(p. 505):

"Some of the photographs of cavities
attached to bodies with K>0 do suggest
that there is a tendency for the cavity
to be filled up from the rear with a
foaming mass of water and then for the
contents of the cavity to be swept
downstream suddenly with repetition of
the whole process."

In our computation we see that where the
flow around the outer surface of the cavity
closes on the central rod there is a flow
stagnation point. Some fluid at this point is
directed back toward the rear of the disk.
Since there is no pressure gradient or any
other resistive force in this region, the flow
will eventually hit the rear surface of the
disk.

In Fig. 8 this re-entrant flow has only
progressed about halfway toward the disk, and
some of this fluid is interacting with the
outer surface of the cavity. The pressure
contours in Fig. 8 indicate there is virtually
no pressure variation within the cavity. A
very small negative pressure exists within the
re-entrant fluid, but this is producing more
vapor and does not last for long.

It is important to recognize that some
physical phenomena have been neglected in the
computer simulation that could influence the
behavior of the re-entrant flow. For i
instance, no turbulence effects (or even vis-
cous effects) were included in the calcula-
tion. Perhaps more important is the fact that
no vapor dynamics are included. It is likely,
and experiments tend to support the idea, that
vapor is continually leaving the cavity sur-
face and flowing toward the rear of the cav-
ity. Mcmentum of the vapor could act as an
axial force that confines the re-entrant flow
to the rear portion of the cavity. It would
be interesting to know, for example, whether
or not fluid is actually observed to strike
the rear of the disk. Answers to such ques-
tions will have to wait until further exper-
imental data is available.

This calculation, out to a problem time of
t=20.0, required 3.69 hours of CPU time on a
MicroVAX II computer. If only the basic cav-
ity is of interest, the calculation gould have
been terminated at t=10.0, thus cutting the
CPU time in half.
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In this third example we consider flow

about the body of a torpedo. The torpedo con-
sists of a cylindrical piece with a conical
nose that is 45 cm long from nose to base and
has a diameter of 10 cm. Since the torpedo is
moving at "high speed," 10,000 cm/s (100 m/s),
we expect to observe some cavitation. Figure
9 shows a schematic of the problem. The ambi-
ent pressure has been taken to be 2.0 atm and
the cavitation pressure is Po=0.03 atm.

Computational Model

The computational mesh consisted of 25
radial cells and 42 axial cells to define a
radial region of 25 cm and an axial region of
75 cm. As in the previous case, the outer
radial boundary is a specified pressure bound-
ary, but now the outflow boundary is continu-
ative (i.e., zero normal derivatives for all
flow guantities). At the inflow the velocity
is held at a constant value of 10,000 cm/s.
We assume the torpedo is subjected to an
impulsive start. The total computational
problem time was set to be 10 ms, whlch.l§
sufficient to achieve steady state conditions.

. tati ] 1t
Snapshots of the computed flow are col-
lected in Fig. 10. In this case we see that
two cavitation bubbles form, one rearward of

the nose/body intersection and one at the
outer edge of the base. These two hubblesl
eventually merge into a single bubble leaving
some fluid inside the cavity that is slowly
moving toward the outflow boundary.

The final velocity vector plot in Fig. 10
is the steady state result. A pressure con-
tour plot is also given at this time. The
cavitation bubble begins slightly downstream
of the nose/body intersection point. Since no
experimental data is available for this, we




can only state that the results are qualita-
tively reasonable, exhibiting cavitation where
it would be expected.

Steady state results are achieved in this
case because the computational region does not
include the downstream region where the cavity
must eventually close up. Also, the vapor
cavity is allowed to pass through the outflow
boundary because it is a continuative boundary
and not a fixed pressure boundary like that
used in the pipe constriction example.

These results are not equivalent to replac-
ing the cavitation bubble with a constant
pressure gas bubble. If one tried this, the
leading edge of the gas bubble would immedi-
ately be swept downstream with the incident
flow.

The key difference in the two cases is
associated with the flow at the intersection
of the torpedo nose and body. 1In this region,
if there is no cavitation, the pressure is
reduced below the cavitation pressure because
this is the only way flow can be made to turn
the corner and satisfy mass continuity (i.e.,
a zero velocity divergence). When a gas
bubble is placed at the corner, the flow sepa-
rates from the surface but not before turning
the flow into the bubble surface and carrying
it downstream.

On the other hand, when cavitation is pres-
ent, flow turns into the vapor bubble with a
non-zero velocity divergence. The value of
the divergence corresponds to the generation
of new vapor which sustains the cavitation
bubble.

—— lunt-Nosed Bod

In an effort to see how the new model would
respond to conditions in which there is only a
small localized region of cavitation, a series
of calculations were performed for flow over a
blunt-nosed body.

- tati 1 Mode]

The body selected was a cylinder with a
hemispherical nose cap. In this case the
radius of the cylinder was set at 1.0 in non-
dimensional units. The total length of the
body included in the computational region was
6.0 units. An inflow boundary was placed 2.0
units in front of the nose.

A unit flow velocity was defined at the
inflow boundary and a continuative boundary
condition was used at the outflow. To provide
a reference pressure, the outer radial bound-
ary at 3.0 units was defined to remain at a
constant unit pressure.

The computational mesh had 22 cells in the
radial direction with a minimum size of 0.1 at
the surface of the cylinder. There were 40
mesh cells used in the axial direction, with a
minimum cell size of 0.1 located at the equa-
tor of the hemispherical nose.
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To provide a benchmark, flow was computed
over the body assuming no cavitation, Fig. 11.

A minimum pressure of 0.714 was recorded at
the junction of the nose with the cylinder.
Thus, selecting a cavitation pressure less
than this value, or cavitation number K
greater the 0.572, will not lead to any cavi-
tation.

Cavitation Results for K=0.56

Setting the cavitation pressure at about 1%
above the minimum value observed in the pre-
vious computation (Pg=0.72 or K=0.56) should
result in a relatively small amount of vapor
production. Figure 12 shows the statistically
steady result that was computed with the modi-
fied FLOW-3D program.

There is a very small cavitation bubble
located approximately 0.35 units downstream
from the beginning of the cylindrical section
of the body. This is in close agreement with
one of the photographs (left) shown in Fig.
13, which was taken from Ref. 1. Unfortu-
nately, no data was given in connection with
this photograph. The associated text,
however, does emphasize that the observed cav-
itation is slightly downstream from the mini-
mum pressure location, just as observed in the
computations.

Our computed results do exhibit some fluc-
tuations in the fluid fraction level at the
cavitation location, which indicates that
truly steady flow conditions cannot be
achieved. This presumably corresponds to the
experimental situation in which small bubbles
are continuously forming and collapsing in the
cavitation zone.

For comparison it is interesting to con-
sider what happens when the cavitation pres-
sure is further raised to Pc=0.87 (K=0.26).
This value was selected because it corresponds
to another photographic result (right) shown
in Fig. 13, and reproduced from Batchelor's
book, Ref. 6.

In the photograph we see a larger, bubbly
cavitation region beginning slightly down-
stream from the minimum pressure location.

The cavitation region has an approximate axial
length of 1.5 units. Note alsoc that the nose
of the body in the photograph is not hemi-
spherical but more pointed, so we cannot make
a direct comparison with the computational
example.

Computational results for near steady state
conditions are shown in Fig. 14. Here we also
see a larger cavitation region, but it is
about twice as long as that in the photograph.
This difference may be caused by the use of a
nose shape that is more blunt and, therefore,
more likely to produce more cavitation. In
any case, the computed results appear reason-
able and do clearly show the increase in cavi-
tation that occurs when the cavitation number
is reduced.
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The final illustration of a cavitating flow
is quite different from the previous cases.
Here we wish to examine the effect of cavita-
tion on the sloshing of fluid in an elliptical
container under low gravity conditions.
Figure 15 is a schematic of the problem. An
elliptical tank is half filled with an incom-
pressible liquid (water). For simplicity we
shall assume the tank is only two dimensional.
A vapor (cavitation) pressure of zero is
assigned to the vapor region.

The tank is in a zero-gravity environment
but is being subjected to a time-dependent
acceleration consisting of two parts. The
first part is a constant axial acceleration of
-0.1 units (nondimensional) that acts as a
low-g body force trying to keep the liquid at
the left end of the tank. The second part is
sinusoidal with amplitude 0.21 and angular
frequency 0.10 radians per time unit.

Computational Model

The tank has been resolved by a mesh con-
sisting of 25 cells in the horizontal direc-
tion (direction of acceleration) and 15 cells
in the vertical direction. The tank is 100
units in length and 60 units in height.

Noninertial accelerations were modeled
using the MOTION routine in FLOW-3D, which is
designed for just this purpose. It was neces-
sary, however, to program in the particular
acceleration history wanted for this example.
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When no cavitation is allowed, the liquid
remains at the left end of the tank, Fig. 16,
and the axial force exerted on the tank by the
liquid simply reflects the applied accelera-
tion. Positive forces in this case, of
course, imply negative fluid pressures on the
tank wall, a condition that would not be pos-
sible with a cavitation pressure of zero.

Figure 17 shows a repeat of the same physi-
cal problem except that cavitation has been
enabled. After 0.75 cycles of oscillation the
fluid has clearly pulled away from the tank
wall leaving a vapor cavity. By 1.25 cycles

the fluid is located midway in the tank but is

heading back toward the left end. Fluid
impacts the tank shortly before the 1.75 cycle
plot, as can be inferred from the large nega-
tive force spike in the force history plot.

In the 1.75 cycle picture the liguid has again
pulled away from the left wall because nega-
tive pressures are not supported in the cavi-
tation model.

A periodic fluid response is not possible
in this example because of the large amplitude
of the sloshing motion. At the 1.75 cycle
plot, for instance, we can see that some lig-
uid has jetted around the tank walls toward
the right end of the tank. This simple
illustration shows that cavitation phenomena
can have important consequences on the hydro-
dynamic forces generated by sloshing. Here,
for instance, the impact of fluid following

the collapse of the cavitation bubble gener-
ates a force on the tank that is significantly
larger than the peak force observed in the
no-cavitation case. This happens because
there is a large body of fluid (i.e., large
momentum) behind the vapor bubble surface that
must be brought to rest when the bubble
finally collapses. CPU time for this slosh
calculation with cavitation was a modest 38.5
minutes (0.64 hours) on a MicroVAX II com-
puter.

SUMMARY AND DISCUSSION

A new model has been added to the FLOW-3D
program that permits the investigation of sev-
eral types of cavitation phenomena. Examples
of supercavitation generated by bodies moving
through fluids and large cavitation bubbles
generated in accelerating containers have been
used to illustrate the new model.

Cavitation bubbles are automatically pro-
duced in the model when the fluid pressure is
at or below the cavitation pressure. Even
after their formation, however, we have shown
why such bubbles are qualitatively different
from constant pressure gas bubbles. We have
also seen how the model can be used to gain a
better appreciation of the flow dynamics asso-
ciated with cavitation phenomena.

Experimental data with which to validate
the new model is in short supply. Comparisons
based on photographic data have been made in
this note with good results. As more data
becomes available, it will be interesting and
fruitful to see how well FLOW-3D can perform.
It may be anticipated that computational mod-
els of this sort will provide increased under-
standing of a wide range of important
cavitation phenomena.
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cavitation, K=0.56. Closeup (right)

shows small cavitation bubble.
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Experimental photographs of
cavitating flows. Left photo from
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Fig. 15.
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Fig. 14. Flow about blunt cylinder with

cavitation, K=0.26.

_—2D "Tank"

Pp= 0.0
=-0.1

DS b =0.21

Acc = a + bSin(Qt) Q=010

Schematic for tank acceleration
problem.




0.00 cycles 0.75 cycles 0.00 cycles 0.75 cycles

1.25 cycles 1.75 cycles
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Fig. 16. Results without cavitation. Fig. 17. Results with cavitation.
X force history shown at bottom. X force history shown at bottom.
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