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Abstract

Methods of Computational Fluid Dynamics are applied
to simulate pulsatile blood flow in human vessels and in
the aortic arch. The non-Newtonian behaviour of the hu-
man blood is investigated in simple vessels of actual size.
A detailed time-dependent mathematical convergence test
has been carried out. The realistic pulsatile flow is used
in all simulations. Results of computer simulations of the
blood flow in vessels of two different geometries are pre-
sented. For pressure, strain rate and velocity component
distributions we found significant disagreements between
our results obtained with realistic non-Newtonian treatment
of human blood and widely used method in literature: a
simple Newtonian approximation. A significant increase of
the strain rate and, as a result, wall sear stress distribution,
is found in the region of the aortic arch. We consider this
result as theoretical evidence that supports existing clini-
cal observations and those models not using non-Newtonian
treatment underestimate the risk of disruption to the human
vascular system.

Keywords: Fluid dynamics, Navier-Stokes equation,
human blood flow, non-Newtonian viscosity, human ves-
sels, aortic arch, pressure and wall shear stress distributions.

1. Introduction

Human blood is a liquid with variable density and vis-
cosity. The movement of the blood inside vessels and ar-
teries can be described by fundamental laws of physics, i.e.
equations of fluid dynamics. The scientific literature now
contains many citations where researchers have used com-
puter simulations of blood flows in various size vessels and
arteries at different spatial geometries, see for example [1-
10]. Whereas experimental investigations of vascular dy-
namics and flow are complicated or simply impossible to
carry out due to small sizes of vessels in living systems.
Therefore, theoretical-mathematical models and computer
simulations are very useful for studying blood flows.

Atherosclerosis occurs at specific arterial sites. This
phenomenon is related to hemodynamics and to wall shear
stress (WSS) distributions. WSS is the tangential drag force
produced by moving blood. It is a mathematical function of
the velocity gradient of blood near the endothelial surface:
τw = µ [∂U(t, y, Rv)/∂y]y≈0, hereµ is the dynamic vis-
cosity,t is current time,U(t, y, Rv) is the flow velocity par-
allel to the wall,y is the distance to the wall of the vessel,
andRv is its radius. It was shown, that the magnitude of
WSS is directly proportional to blood flow and blood vis-
cosity and inversely proportional to the cube of the radius
of vessels, in other words a small change of the radius of a
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vessel will have a large effect on WSS.
Arterial wall remodeling is regulated by WSS. In re-

sponse to high shear stress arteries enlarge. Consequently,
the atherosclerotic plaques localize preferentially in regions
of low shear stresses, but not in regions of higher shear
stresses. Furthermore, decreased shear stress induces inti-
mal thickening in vessels which have adapted to high flow.
Also, final vascular events that induce fatal outcomes, such
as acute coronary syndrome, are triggered by the sudden
mechanical disruption of an arterial wall. Thus, we can con-
clude, that the final consequences of tragic fatal vascular
diseases are strongly connected to mechanical events that
occur on the vascular wall, and these, in turn, which are
likely to be heavily influenced by alterations in blood flow
and the characteristics of the blood itself.

In order to predict, diagnose, and prevent fatal outcomes
in these vascular diseases,fluid + solid mechanicalinter-
actions between the human blood and the vascular wall are
attractive and necessary targets for analysis. However, it
is very difficult to make measurements of detailed mechan-
ical properties in living systems. In turn, theoretical bio-
mathematics provides a series of logic tools that can over-
come limitations of direct measurements in highly labile
living systems and provide a framework for testing vari-
ables, and is more rapid, efficient, and possibly more pre-
dictive than repeated experimentation in animal modeling
systems

In this work we carry out real-time full-dimensional
computer simulations of pulsatile blood flows in actual size
vessels and in the aortic arch. We take into account dif-
ferent physical effects on blood flow and examine the non-
Newtonian nature of human blood as a fluid.

Computer simulation is well-suited to those cases in
which it is difficult to carry out reliable experiments due
to the very small size of some vessels, such as, for example,
coronary arteries. Also, bio-mathematical computer simu-
lations may be especially useful in situations when an in-
travascular stent is implanted inside a vessel, aortic arch,
aortas etcetera. Stents may have complicated shapes and
they are very small micro-devices (typically only several
millimeters in diameter, when fully deployed). It is use-
ful to know pressure, strain rate distributions and the profile
of blood flow after coming through a stented vessel.

The next section presents the mathematical and numer-
ical methods used in this work. Section 3 presents our re-
sults. TheCGS unit system is used in all simulations as
well as for presentation of our results.

2. Method

In this work we consider the human blood as an incom-
pressible fluid, and flows in vessels and in the aortic arch
are assumed to be laminar. One of the goals of this work

is to investigate the non-Newtonian behaviour of the human
blood. To attain these ends we carry out simulations for
same systems, but with different models of the blood. Then
we compare the results.

For many years, investigation of hemorheology has been
of great interest in the field of biomedical engineering.
Researchers have investigated correlations for example, of
stroke, arterial diseases, hypertension, and whole blood vis-
cosity. Blood consists of plasma and particles, including
red blood cells, leukocytes, platelets and macromolecular
protein aggregates. The viscosity of blood depends on the
viscosity of plasma, in combination with the hematocrit (a
measure of the particulate component of blood). The nor-
mal hematocrit of human blood ranges between 35% - 45%.
Higher hematocrit implies higher viscosity. The relation be-
tween hematocrit and viscosity is very complex and in the
scientific literature, many mathematical fitting formulas are
available for assessing this relationship.

Next, the viscosity of blood determines its velocity. That
is, when velocity or shear rate increases viscosity decreases.
Also, the viscosity/velocity depends on the size of the blood
vessel. This is called the Fahraeus-Lindqvist effect, that
is in small diameter blood vessels, and at higher veloci-
ties, blood viscosity decreases. Viscosity of human blood
strongly depends on its temperature.

To carry out our simulations we used a commercial pro-
gram FLOW3D from Flow Science Inc., Santa Fe, New
Mexico, USA. FLOW3D is a general purpose CFD pack-
age. It applies specially developed numerical techniques to
solve the equations of motion of fluid. The methods imple-
mented in the program allow us to obtain transient, 3D solu-
tions for multi-scale and multi-physics flow problems. One
of the most attarctive sides of FLOW3D is very well de-
veloped numerical techniques to solve non-linear fluid dy-
namic equations. To our best knowledge our work is the first
time application of the FLOW3D program to blood flows in
human vessels.

When the turbulence option is used, the viscosity is
a sum of the molecular and turbulent values. For non-
Newtonian fluids the viscosity can be a function of the strain
rate and/or temperature. A general expression based on the
Carreau model is used in FLOW-3D for the strain rate de-
pendent viscosity:

µ = µ∞ +
µ0ET − µ∞

λ00 + [λ0 + (λ1ET )2eijeij ](1−n)/2

+
λ2

√
(eijeij)

, (1)

whereeij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the fluid strain
rate in Cartesian tensor notations,µ∞, µ0, λ0, λ1, λ2 andn
are constants. Also,ET = exp[a(T ∗/(T − b)−C)], where
T ∗, a, b, andc are also parameters of the temperature de-
pendence, andT is fluid temperature. This basic formula is



used in our simulations for blood flow in vessels and in the
aortic arch.

Next, fluid dynamics is described with 2-nd order non-
linear, transient differential equations. The governing equa-
tions consist of the continuity equation and the Navier-
Stokes equations. The general mass continuity equation,
which is solved within the FLOW3D program has the fol-
lowing generalform:

Vf
∂ρ

∂t
+

∂

∂x
(ρuAx) + R

∂

∂y
(ρvAy) +

∂

∂z
(ρwAz) +

ξ
ρuAx

x
= Rdif + Rsor, (2)

whereVF is the fractional volume open to flow,R andxi
are coefficients which value dependent on the coordinate
system: (x, y, z) or (r, θ, z), ρ is the fluid density,Rdif

is a turbulent diffusion term, andRsor is a mass source,
(u, v, w) are the velocity components in coordinate direc-
tions (x, y, z) respectively. For example, when Cartesian
coordinates are used,R = 1 andξ = 0, see FLOW3D man-
ual [9]. Finally,Ax is the fractional area open to flow in the
x direction, analogously forAy andAz.

The turbulent diffusion term is

Rdif =
∂

∂x
(vpAx

∂ρ

∂x
) + R

∂

∂y
(vpAyR

∂ρ

∂y
) +

∂

∂z
(vpAz

∂ρ

∂z
) + ξ

ρvpAx

x
, (3)

where the coefficientvp = Cpµ/ρ, µ is dynamic viscosity
andCp is a constant. TheRsor term is a density source term
that can be used to model mass injections through porous
obstacle surfaces.

It is well known, that compressible flow problems re-
quire solution of the full density transport equation. In this
work we treat blood as an incompressible fluid. For incom-
pressible fluidsρ = constant and the Eqn. (2) becomes the
following:

∂

∂x
(uAx)+

∂

∂y
(vAy)+

∂

∂z
(wAz)+ ξ

uAx

x
=

Rsor

ρ
. (4)

The equations of motion for the fluid velocity compo-
nents(u, v, w) in the 3-coordinate system are the Navier-
Stokes equations with specific additional terms included in
the FLOW3D program:

∂u

∂t
+

1

VF
uAx

∂u

∂x
+ vAy

∂u

∂x
+ wAz

∂u

∂x
− ξ

Ayv2

xVf
=

−
1

ρ

∂p

∂x
+ Gx + fx − bx −

Rsor

ρVf
(u − uw − δ · us) (5)

∂u

∂t
+

1

VF
uAx

∂u

∂x
+ vAy

∂u

∂x
+ wAz

∂u

∂x
+ ξ

Ayuv

xVf
=

−
1

ρ
R

∂p

∂y
+ Gy + fy − by −

Rsor

ρVf
(v − vw − δ · vs) (6)

∂u

∂t
+

1

VF
uAx

∂u

∂x
+ vAy

∂u

∂x
+ wAz

∂u

∂x
= −

1

ρ

∂p

∂z
+

Gz + fz − bz −
Rsor

ρVf
(w − ww − δ · ws), (7)

where,(Gx, Gy, Gz) are so called body accelerations [9],
(fx, fy, fz) are viscous accelerations,(bx, by, bz) are flow
losses in porous media or across porous baffle plates, and
the final term accounts for the injection of mass at a source
represented by a geometry component. As we mentioned
above, FLOW3D is a general purpose fluid dynamics pro-
gram, which includes many specific situations. However, in
this short description we try to make a valuable impression
about FLOW3D and give here the general form of all equa-
tions. Next, the termUw = (uw, vw, ww) in Eqn. (5) is
the velocity of the source component, which will generally
be non-zero for a mass source at a General Moving Object
(GMO) [9]. The termUs = (us, vs, ws) is the velocity of
the fluid at the surface of the source relative to the source
itself. It is computed in each control volume as

~Us =
1

ρs

d(Q~n)

dA
(8)

wheredQ is the mass flow rate,ρs fluid source density,dA
the area of the source surface in the cell and~n the outward
normal to the surface.

The source is of the stagnation pressure type when in
Eqs. (5-7)δ = 0.0. Next, δ = 1.0 corresponds to the
source of the static pressure type.

It is assumed, that at a stagnation pressure source fluid
enters the domain at zero velocity. As a result, pressure
should be considered at the source to move the fluid away
from the source. For example, such sources are designed to
model fluid emerging at the end of a rocket or the simple de-
flating process of a balloon. In general, stagnation pressure
sources apply to cases when the momentum of the emerg-
ing fluid is created inside the source component, like in a
rocket engine. At a static pressure source the fluid velocity
is computed from the mass flow rate and the surface area of
the source. In this case, no extra pressure is required to pro-
pel the fluid away from the source. An example of such a
source is fluid emerging from a long straight pipe. Note that
in this case the fluid momentum is created far from where
the source is located.

For a variable dynamic viscosityµ, the viscous acceler-
ations are

ρVF fx = ws
x − (

∂

∂x
(Axτxx) + R

∂

∂y
(Ayτxy) +

∂

∂z
(Azτxz) +

µ

x
(Axτxx − Ayτyy)) (9)

ρVF fy = ws
y − (

∂

∂x
(Axτxy) + R

∂

∂y
(Ayτyy) +



∂

∂z
(Azτyz) +

µ

x
(Ax + Ayτxy)) (10)

ρVF fz = ws
z −

(

∂

∂x
(Axτxz) + R

∂

∂y
(Ayτyz)

)

+

(

∂

∂z
(Azτzz) +

µ

x
(Axτxz)

)

, (11)

where

τxx = −2µ

(

∂u

∂x
−

1

3

(

∂u

∂x
+ R

∂v

∂y
+

∂w

∂z
+

ξu

x

))

(12)

τyy = −2µ

(

∂v

∂x
+ ξ

u

x

)

−
1

3

(

∂u

∂x
+ R

∂v

∂y
+

∂w

∂z
+

ξu

x

)

(13)

τzz = −2µ

(

∂w

∂z
−

1

3

(

∂u

∂x
+ R

∂v

∂y
+

∂w

∂z
+

ξu

x

))

(14)

τxy = −µ

(

∂v

∂x
+ R

∂u

∂y
−

ξv

x

)

(15)

τxz = −µ

(

∂u

∂z
+

∂w

∂x

)

(16)

τyz = −µ

(

∂v

∂z
+ R

∂w

∂y

)

. (17)

In Eqs. (12)-(17) the termsws
x, ws

y andws
z are wall shear

stresses. If these terms are equal to zero, there is no wall
shear stress. This is because the remaining terms contain
the fractional flow areas(Ax, Ay, Az) which vanish at the
walls. The wall stresses are modeled by assuming a zero
tangential velocity on the portion of any area closed to flow.
Mesh and moving obstacle boundaries are an exception be-
cause they can be assigned non-zero tangential velocities.
In this case the allowed boundary motion corresponds to a
rigid body translation of the boundary parallel to its surface.
For turbulent flows, a law-of-the-wall velocity profile is as-
sumed near the wall, which modifies the wall shear stress
magnitude.

As we already mentioned, in all simulations we consider
the blood flow as pulsatile flow. The final result for the
inflow waveform has been taken from work [6]. The wave-
form is shown in Fig. 1. These velocity values are used as
time-dependent inflow initial boundary conditions. These
numbers are included directly in the FLOW3D program.

The equations of fluid dynamics should be solved to-
gether with specific boundary conditions. The numerical
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Figure 1. Velocity waveform at the vessel in-
let. Results taken from Fig. 2 of work [6].

model starts with a computational mesh, or grid. It consists
of a number of interconnected elements, or 3D-cells. These
3D-cells subdivide the physical space into small volumes
with several nodes associated with each such volume. The
nodes are used to store values of the unknown parameters,
such as pressure, strain rate, temperature, velocity compo-
nents etcetera. This procedure provides values for defining
the flow parameters at discrete locations and to set up spe-
cific boundary conditions. Finally, one can start developing
effective numerical approximations for the solution of the
fluid dynamics equations.

New pressure-velocity solvers have been implemented
in FLOW-3D. We used the so called GMERS method. GM-
RES stands for the generalized minimum residual method.
In addition to the GMRES solver, a new optional algorithm,
the generalized conjugate gradient (GCG) algorithm, has
also been implemented for solving viscous terms in the new
GMRES solver. This new solver is a highly accurate and
efficient method for a wide range of problems. It possesses
good convergence, symmetry and speed properties; how-
ever, it does use more memory than the SOR or SADI meth-
ods. The GMRES solver does not use any over- or under-
relaxation [9].

3. Results

This section represents the results of our simulations for
blood flows in a simple vessel and in the human aortic arch.
The first geometry was chosen for preliminary test calcula-
tions and testing the FLOW3D program. One of the most
important preliminary testing tasks is the check numerical
convergence. This test has been successful and our results
will be shown below in this paper. To our best knowledge



the current work is a first attempt to apply FLOW3D to hu-
man blood flows in vessels and in aortic arch.

First, we present results for a simpler geometry vessel in
the shape of a tube. However, the human blood is treated
as real and a non-Newtonian liquid. The necessary data for
viscosity of the blood we found from previous laboratory
and clinical measurements [1, 3]. We take into account the
real pulsatile flow, which is shown in Fig. 1. The data for
Fig. 1 have also been obtained in clinical measurements [6].

After such preliminary simulations we switch to a more
complicated spatial configuration. In this work it is the aor-
tic arch. It is axiomatic that real people may have different
size aortic arches with slightly different shapes. However,
we carried out simulations for an average size and shape
aortic arch.

The main goal of this work is to treat the above men-
tioned systems realistically, reveal the physics of the blood
flow dynamics, and to obtain reliable results for pressure,
dynamic viscosity, velocity profiles and strain rate distribu-
tions. Also, we tested, the widely cited in literature, New-
tonian and non-Newtonian models of the human blood.

3.1 Blood flow in vessel

As we mentioned above in this work we adopted the
shape of a straight vessel as a tube. The sizes of the tube
are: L = 8 cm in length andR = 0.34 cm in the inner
radius. The thickness of the vessel wall iss = 0.03 cm. We
have chosen 5.5 cycles of the blood pulse.

Consider in more detail the expression (1). In these cal-
culations we follow the works [1, 3], where the Carreau
model of the human blood has also been used. In con-
sistence with [1, 3] we choose the following coefficients:
λ2 = λ00 = 0, a = 0 andET = 1, that is we don’t take
into account the temperature dependence of the viscosity.
Next: λ0 = 1, λ1 = 3.313 sec,µ∞ = 0.0345 P,µ0 = 0.56
P, andn = 0.3568.

In our calculations we applied a cylindrical coordinate
system with the axisOZ directed over the tube axis. Dif-
ferent numbers of cells have been used to discretize the
empty space inside the tube. In the open space (inner part of
the tube) the fluid dynamics equations have been solved to-
gether with appropriate mathematical boundary conditions.
The convergence was achieved when we used 52,800 cells,
that is we used 100 points overOZ, 22 points over the ra-
dius of the inside spaceR = 0.34 cm, and 24 points over
azimuthal angleΦ from 0 to 2π.

Time-dependent results for pressure, strain rate and ve-
locity componentW are presented in Fig. 2. We chose
three precise geometrical points to compare results - 1st: in
the inlet of the tube, whenZ = 0; 2nd: in the middle point
Z = 4.0 cm, and 3rd: in outlet pointz = 8.0 cm. The data
for Fig. 2 was obtained with two different models of human

blood. The bold lines are results with the non-Newtonian
viscosity (1) and the dashed lines are results with the New-
tonian model when the viscosityµ has a constant value and
equals to 0.0345 P. As one can see the results are different
for strain rate distributions and very different for pressure
distributions. These results clearly indicate that probably in
most cases of computer simulations of human blood flows
only the non-Newtonian model should be used.

In Fig. 3 we show our time-dependent convergence
results. These data are obtained with the realistic non-
Newtonian model of the blood. Again, we have chosen
three geometrical points to compare results: 1- in the in-
let of the tube, whenZ = 0; 2- in the middle pointZ = 4.0
cm, and 3- outlet pointz = 8.0 cm.

Three upper rows represent time-dependent plots for
pressure, dynamics viscosity and strain rate distributed over
the simulation time, which is 5.5 sec. However, below in
three lower rows results for the kinematic characteristicsof
the blood flow are also shown, which are three components
of the blood velocity:U, V, W . The results are obtained
with three sets of computation cell distributions, where we
used 36,000 cubic cells, 47,000 and 52,000 cubic cells. As
we see from Fig. 3 it is harder to obtain convergence for
the pressure distributions and easier for other shown param-
eters.

3.2 Blood flow in aortic arch

The aortic arch is represented as a curved tube [4]. In our
simulations the outer radius of the tube is 2.6 cm. A straight
vessel (tube) is also merged to the arch. The length of the
straight tube is about 4 cm. Again, the thickness of the wall
is 0.03 cm, and the inner radius of the tube isr = 0.34 cm.
The geometry is shown in Figs. 4 and 5. This configuration
closely models and represents the real aortic arch. One of
the goals of these simulations is to reveal the physics of the
blood flow dynamics in the arch.

Now we use the Cartesian coordinate system. Here
we also carried out a convergence test. To better repre-
sent the shape of the arch we applied five Cartesian sub-
coordinate systems in our FLOW3D simulations. After the
discretization the total number of all cubic cells reached
about 400,000. It is important to mention here, that we
again obtained a full numerical convergence.

As we mentioned the goal of these simulations is to com-
pute pressure, velocity and strain rate distributions in the
arch, while the human blood is treated as a non-Newtonian
liquid and the realistic pulsatile blood flow is used as it is
shown in Fig. 1. In Figs. 4 and 5 we show the results
for strain rate distributions inside the arch for four specific
time moments. At the most left point, which is inlet, we
specify the pulsatile velocity source as the initial condition,
that is the data from Fig. 1 are used. From the general
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axis. Results for straight vessel for 3 spatial
points: Z=0, 4, 8 cm. Bold lines: calculations
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theory of fluid mechanics [10] it is possible to determine
together with viscosity and spatial geometry, the dynamics
of the blood according to the Navier-Stokes equation and
its boundary conditions. Small vectors indicate the blood
velocity. As can be seen blood flows from left to right in
direction. However, because of pulsatility blood flows in
the opposite direction too. It is seen in Fig. 4 - lower right
graph # 43. It is in good agreement with the general physi-
cal intuition, and it additionally shows correctness of these
simulations.

The values of the strain rate are also shown. These values
are strongly oscillating. From the plots one can conclude
that in the region of the arch the strain rate values are be-
coming much larger than in the region of the straight vessel.
This result represents clear evidence that in this part of the
human vascular system atherosclerotic plaques should lo-
calize less than in the straight vessels. However, the higher
wall shear stress values in the aortic arch could be the rea-
son for sudden mechanical disruption of the arterial wall in
this part of the human vascular system. These results are
consistent with laboratory and clinical observations.

In conclusion, we would like to point out here, that the
developments in this work can be directly applied to even
more interesting and important situation such as, when a
stent is implanted inside a vessel [5, 7, 8]. In that case,
for example, it is important to determine blood flow dis-
turbance, the pressure distribution, strain rate and etcetera.
This work is in progress in our group.
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Figure 3. Time-dependent convergence test: results for pressure, dynamic viscosity, strain rate
and velocity components: U over OX, V over OY, and W over OZ.
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strain rate (1/s)

Figure 4. Blood flow in the aortic arch for two consecu-
tive moments of the discretized time. A strong pulsatility
of the strain rate values is seen: Upper plot shows results
for t = 4.218 sec, where strain rate ranges from e = 1.1
1/sec to e = 24.6 1/sec. Lower plot shows results for t =
4.329 sec, where strain rate ranges from e = 5. 1/sec to
e=234. 1/sec. The maximum values of the strain rate are
localized in the region inside the arch. Blood flows from
right to left in both pictures.
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Figure 5. Blood flow in the aortic arch for two consecu-
tive moments of discretized time. Upper plot shows re-
sults for t = 4.551 sec, where strain rate ranges from e =
0.4 1/sec to e = 22.6 1/sec. Lower plot shows results for t
= 4.662 sec, where strain rate ranges from e = 0.1 1/sec
to e = 27.6 1/sec. The maximum values of the strain rate
are localized again in the region inside the arch. In the
upper plot blood flows from left to right, however in the
lower plot: from right to left.
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