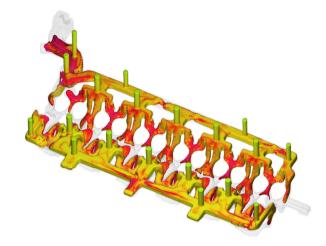
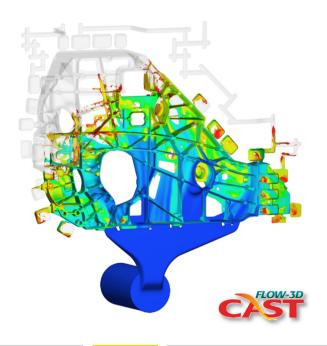
VD

Simulation in support of the development of innovative processes in the casting industry



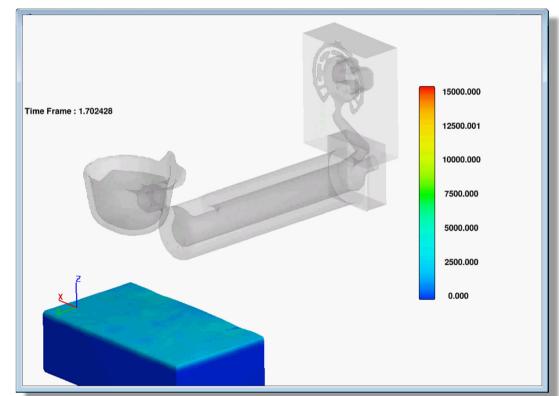


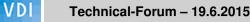
Outline

"The presentation illustrates the application of simulation for the development of innovative casting processes at BMW Light Metal Foundry Landshut and other foundries."

- Introduction of Flow Science Deutschland GmbH
- High pressure die casting of complex structural parts
- Inserts in high pressure die casting
- Innovative ingate system for gravity casting
- Core blowing and core drying for sand cores with inorganic binder systems
- Application of salt cores in high pressure die casting
- Summary

Introduction of Flow Science Deutschland

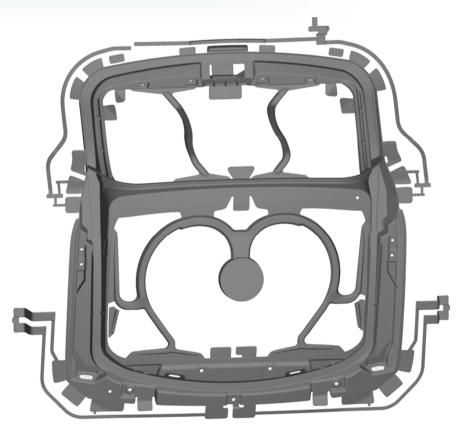




Introduction of Flow Science Deutschland GmbH

- Engineering consultants with focus on casting simulations
- Sales and support of *FLOW-3D* in
 - ⇔ Germany
 - 🖙 Austria
 - ⇒ Switzerland
 - ➡ Norway
 - ⇒ Denmark
 - ⇒ Finland
 - ⇒ Sweden
- Basic and advanced customer specific training
- Customization of *FLOW-3D* (additional functionality)
- Consultancy services

• More than 100 customers from industry, research and academia (e.g. all German automotive OEMs, major foundries and casting research institutes)


"High pressure die casting (HPDC) process is a well known near-net-shape manufacturing technology that can provide geometrically complicated shaped products of aluminum alloys and other low melting point alloys at a low cost."

Advantages of the process:

- ⇒ Dimensional accuracy
- ⇒ Low machining allowances
- \Rightarrow Thin walls and complex shapes possible
- ⇒ Good mechanical properties (very high solidification rate)
- → High strength
- ⇒ Good surface quality
- ⇒ High productivity due to high level of automation

Challenge:

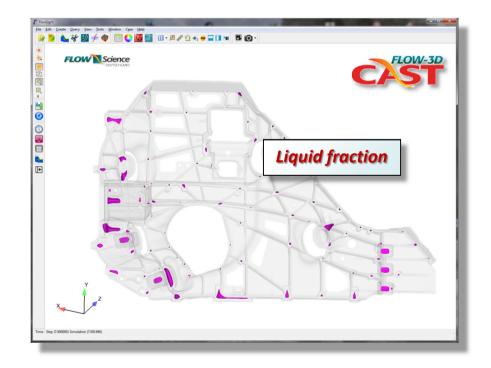
⇒ High pressure die casting process for complex structural parts

Requirements for structural high integrity aluminum die castings:

- ⇒ Weight reduction / part integration
- ⇒ High strength / crash performance
- ⇒ Corrosion resistance
- ⇒ Weldable / heat treatable
- ⇒ Surface quality
- ⇒ Distortion free with tight tolerances

"Complex structural parts are very demanding with regard to the HPDC process and the tooling concept."

- Detailed simulation analysis of complete process:
 - ⇒ Thermal die cycling process
 - Filling process
 (Filling of chamber, modelling of piston movement applying PQ² diagrams)
 - ⇒ Solidification and cooling
 - ⇒ Calculation of residual stresses

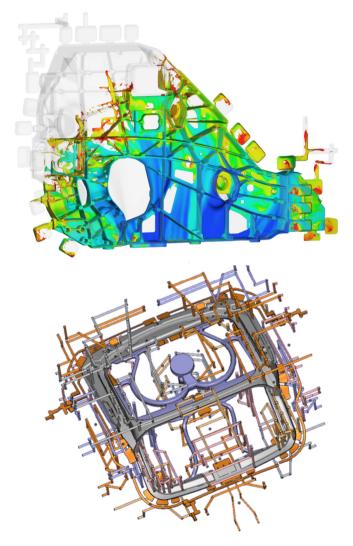


- Numerical simulation should start in an early stage of product development
 - ⇒ Design requirements due to function, production process and material
 - ⇒ Reduction of development time and costs (due to reduction of number of experimental loops)
 - ⇒ Prevention of casting defects
 - ⇒ Enhancement of casting quality

Product development:

VDI

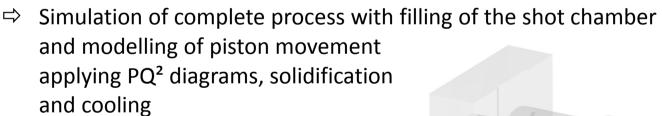
- Solidification simulation of casting part (incl. stress calculation) without gating and venting system (hot spots, stresses, distortion, ...)
- ⇒ Positioning of ingates and vents
- ⇒ Reduction of material accumulation
- Avoidance of critical stresses and inadmissible distortions
- ⇒ Design optimization

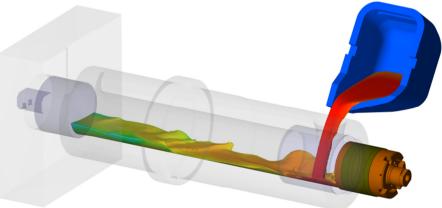

Casting design:

VDI

- ⇒ Filling simulation with "mass sources" as ingates
- ⇒ Definition of ingate and venting positions
- ⇒ Check of castability (Cold run, casting defects, ...)
- ⇒ Design optimization
- ⇒ Filling simulation with designed gating and venting system
- ⇒ Optimization of casting system

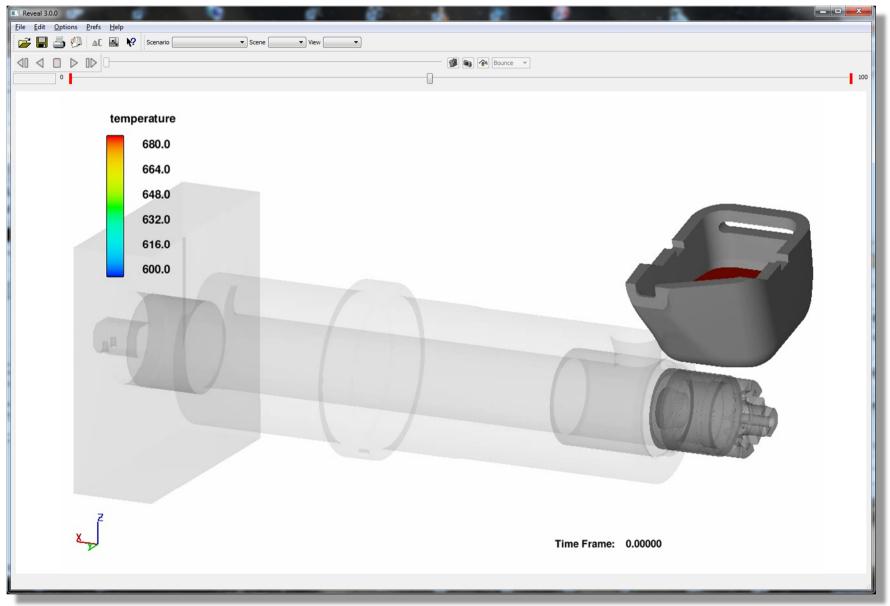
Tooling design:


- ⇒ Solidification simulation
- ⇒ Analysis of heat balance
- ⇒ Dimension and position of cooling system (special cooling equipment)
- ⇒ Support of tooling design

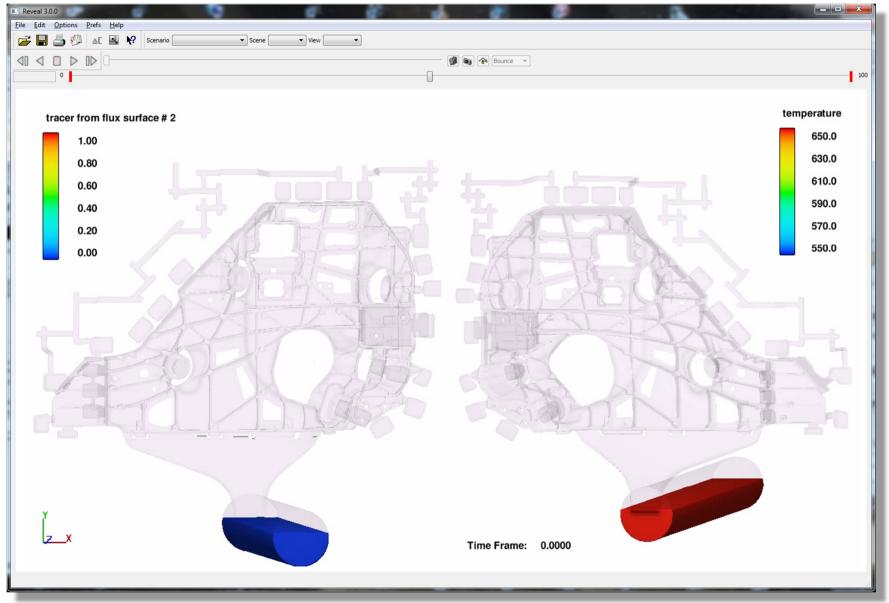

Casting Process:

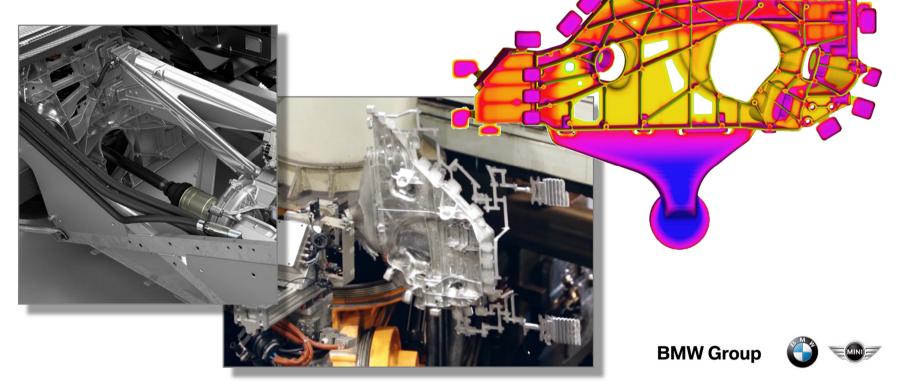
VDI

- ⇒ Thermal die cycling simulation (with stress simulation)
- ⇒ Analysis of heat balance
- ▷ Definition of process parameters (times, temperatures, ...)
- ⇒ Optimization of cooling system
- ⇒ Improvement of tooling design
- cess parameters ures, ...) ooling system cooling design


- ⇒ Definition of process parameters
- ⇒ Final optimization loop for gating and venting system
- ⇒ Final changes to tooling design

hdguss


VDI

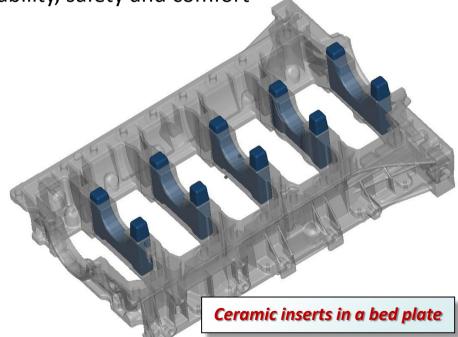


Simulation in support of the development of innovative processes in the casting industry

Winner of International Aluminium Die-Casting Award 2014:

- ⇒ Trial & Error does not result in a producible casting part
- ⇒ Development is only possible with support of simulation
- ⇒ Castability, ingate- and venting system
- ⇒ Tooling design, process parameters, ...

Inserts in high pressure die casting



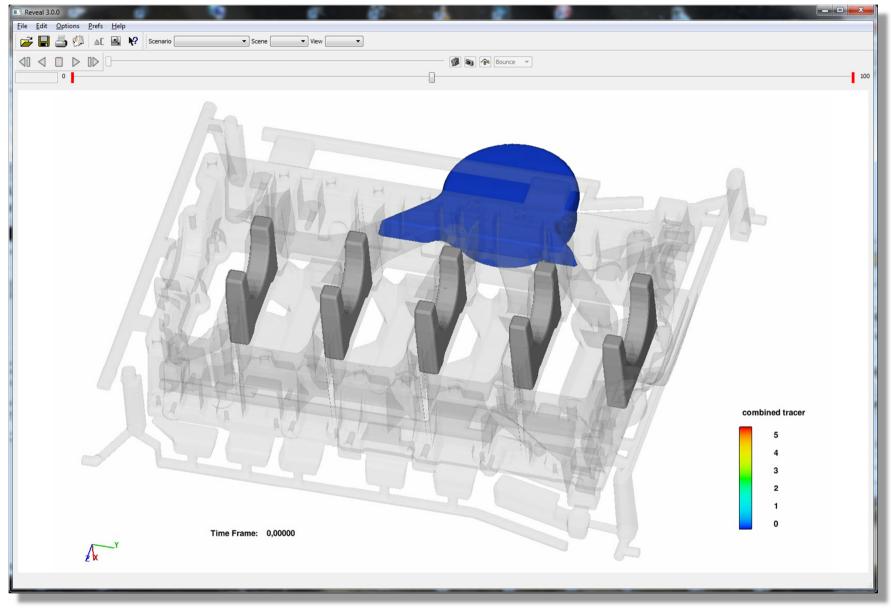
Inserts in high pressure die casting

"HPDC technology has developed rapidly in recent years due to high automation, new die materials, sensor technology and advanced control of foundry systems."

- Intelligent lightweight construction
 - \Rightarrow Problem:
 - Save weight without compromising stability, safety and comfort
 - ⇒ Solution:
 - particularly light high-tech materials
 - modern design of existing parts
 - \Rightarrow The benefit:
 - more stability, safety and comfort
 - less weight and fuel consumption
- Ceramic inserts in HPDC
 - ⇒ Weight reduction
 - ⇒ Increased strength
 - ⇒ Improved performance characteristics

Inserts in high pressure die casting

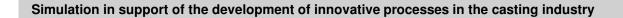
Examples:


- ⇒ Ceramic inserts in a brake disc
- ⇒ Ceramic inserts in a bed plate
- Simulation helps to get answers
 - ⇒ Analysis of the influence on the filling pattern
 - temperatures, casting defects, ...
 - ⇒ Infiltration of the inserts
 - filling direction
 - ⇒ Forces on inserts
 - pressure and shear forces
 - ⇒ Influence on solidification
 - solidification time
 - casting defects (shrink holes, ...)
 - ⇒ Thermally induced stresses
- Simulation helps to optimize
 - ⇒ Process, tooling and design of inserts

Ceramic inserts for a break disc (placed in the mould)


Ceramic inserts in a bed plate

Simulation in support of the development of innovative processes in the casting industry





- BMW light metal foundry Landshut is capable of running five different casting processes for series production:
 - ⇒ Sand casting
 - ⇒ Low pressure die casting
 - ⇒ Gravity die casting
 - ⇒ High pressure die casting
 - ⇒ Lost-foam casting
- Selection of most suitable casting process for each case depends on:
 - ⇒ Engine concept
 - ⇒ Production volume
 - ⇒ Technological requirements
- Casting specialists try to improve standard gravity die casting process:
 - ⇒ Reduction of casting defects
 - ⇒ Higher casting quality
 - ⇒ Better mechanical properties

Top pouring system:

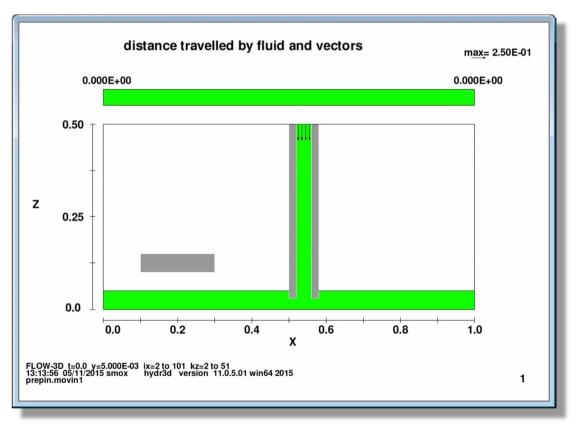
- ⇒ Risers filled with hot material (good feeding)
- ⇒ Bottom plate can be cooled whole filling process
- ⇒ Entrained air due to higher velocity and turbulence
- ⇒ High risk for oxide inclusions

Bottom pouring system:

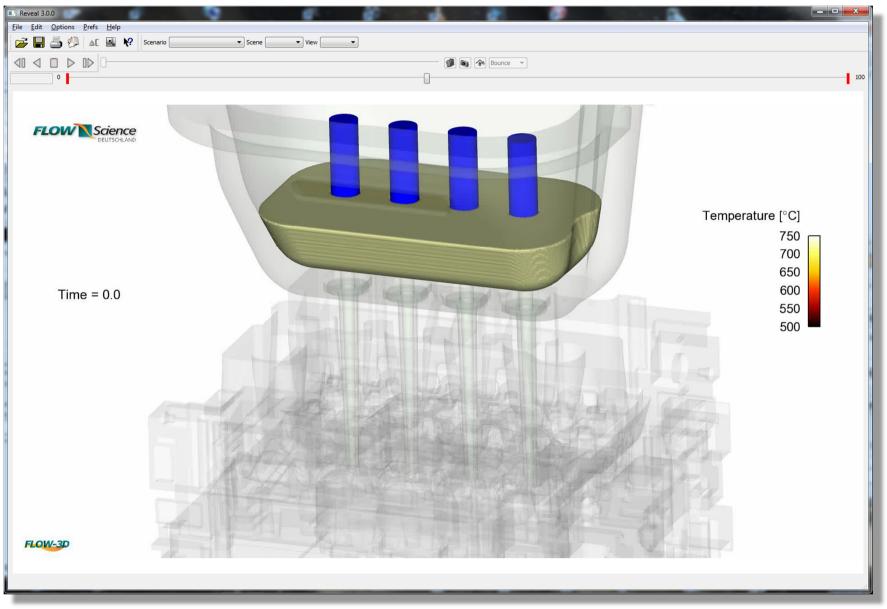
- ⇒ Minimal turbulences inside ingate system
- ⇒ No risk for entrained air and included oxides
- ⇒ Risers filled with colder material
- ⇒ Bottom plate can't be cooled during filling process

Tilt casting (Rotacast®):

- ⇒ Low turbulences during filling
- ⇒ Good temperature profile for solidification
- ⇒ Low risk for oxide inclusions
- ⇒ Risk for entrapped air bubbles during rotation
- ⇒ Higher costs for tool and machine



- Newly developed Injector Casting Process of BMW combines advantages of traditional processes and avoids their disadvantages by applying a moving ingate system:
 - ⇒ Minimal turbulence during filling
 - ⇒ No pouring basin necessary (reduced turbulence during filling)
 - No runner system necessary (reduced development efforts)
 - ⇒ Low risk for entrained air
 - ⇒ Oxides remain inside ladle
 - ⇒ Low risk for any oxide inclusions
 - ⇒ Risers filled with hot material (good feeding)
 - Bottom plate can be cooled during entire filling process (better mechanical properties)
 - ⇒ Not applicable for every casting part
 - ⇒ Some turbulence at beginning of filling process



- Simulation with *FLOW-3D* was used to develop and study new filling process:
 - ⇒ Filling behavior (turbulence, velocities, ...)
 - ⇒ Fluid flow in injector
 - ➡ Temperature distribution (ladle, cavity, injector, ...)
 - ⇒ Possible casting defects (oxides, air bubbles, ...)
 - ⇒ Process parameters
 (temperatures, times, ...)
 - ⇒ Moving regime of stopper
 - ⇒ Moving regime of ladle
 - ⇒ Design of stoppers and ladle
 - ⇒ Design of injectors
 - ⇒ Experimental effort was greatly reduced

VDI

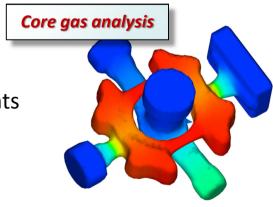
Core blowing and core drying for sand cores with inorganic binder systems

Core blowing and core drying for sand cores

- The light metal foundry at the BMW plant introduced in 2010 a new sand core production method for gravity die-casting:
 - Conventional organic binders were replaced by highly eco-friendly inorganic binders

Environmental aspect:


VDI


- ⇒ Virtually no pollutant emissions (Emissions of combustion residues reduced by 98 percent)
- ⇒ Substantially improved working conditions

Economic and ergonomic benefits:

- ⇒ Improved casting quality due to reduced core gas production
- Enhanced strength of the resulting light-alloy components (due to faster solidification)

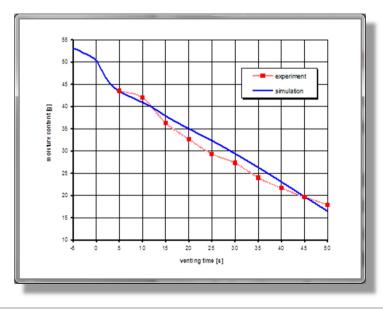
"BMW's Landshut plant is the world's first foundry with complete emission-free sand core production."

Core blowing and core drying for sand cores

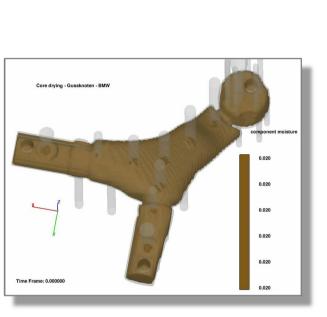
Process steps:

VD

- \Rightarrow Molding sand (with binder) is shot into a heated mold (using a core shooting machine)
- \Rightarrow The core is dried with hot pressurized air (core dries and hardens first in a thin layer adjacent to wall)
- ⇒ Water inside core is vaporized by the hot air (water can condense in colder areas)
- \Rightarrow Air-vapor mixture leaves the core through venting nozzles
- Removal of the water results in the hardening of the core (chemical reaction of the binder)
- Introduction of new process requires a lot of experiments
 - Measurement of sand properties (viscosity, porosity, grain size, ...)
 - ⇒ Blowing process (filling behavior, process parameters, ...)
 - ⇒ Investigation of drying process (method, equipment, process parameters, ...)

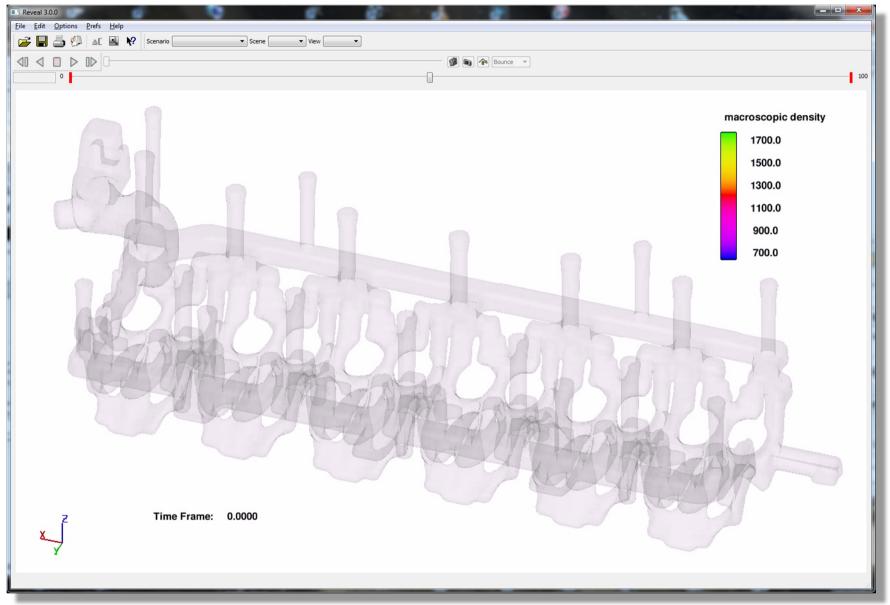


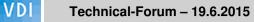

VDI



Core blowing and core drying for sand cores

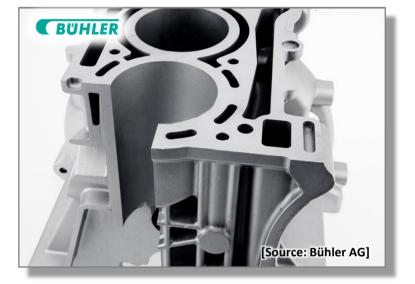
- FLOW-3D was used in the process and tool development
 - ⇒ Development of new core drying model (software)
 - ⇒ Simulation helps to understand process
 - ⇒ Comparison of different drying methods
 - ⇒ Study of process parameters
 - ⇒ Design optimization of tool (heating system, nozzles, vents, ...) and equipment
 - ⇒ Substantial reduction of experiments





Simulation in support of the development of innovative processes in the casting industry

Application of salt cores in high pressure die casting

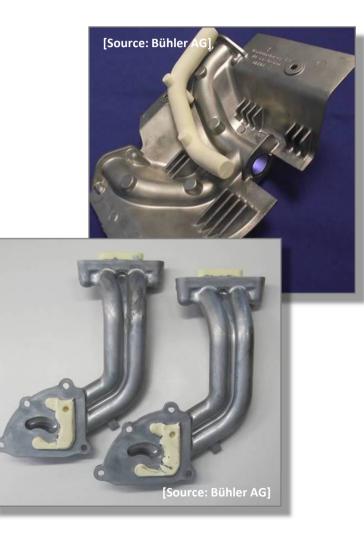


Application of salt cores in high pressure die casting (HPDC)

- Automotive industry is calling for:
 - ⇒ Cost reduction
 - ⇒ Integral design (reduction of the number of components)
 - ⇒ Higher productivity
- Undercuts in HPDC
 - ⇒ Only with complex sliders (high maintenance)
 - ⇒ Technology not economically applicable
- Sand cores from gravity casting
 - ⇒ Not suitable for application in HPDC
 - ⇒ Strength insufficient for high pressure and velocities of HPDC process

Lost Core technology:

- ▷ Possibility to develop complete new components
- ⇒ Production of hollow parts and complex internal design (undercuts)
- ⇒ High degree of function integration
- ⇒ Reduction of machining, sealing and assembling effort



- Unknowns of new technology
 - ⇒ Material properties

VDI

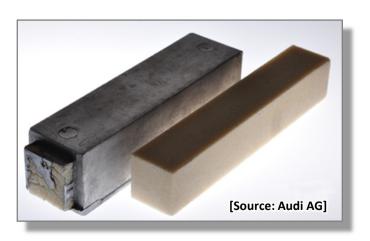
- ➡ Reasonable process parameters (production and usage)
- Production of salt cores
 - ⇒ Process type (gravity casting, HPDC, ...)
 - ⇒ Process parameters
 - ⇒ Quality of salt cores /defects (surface, shrink holes, ...)
 - ⇒ Solidification of salt (very high change in density)
- Usage of salt cores
 - ⇒ High dynamic forces during casting process
 - ⇒ Core failure due to high ingate velocities
 - ⇒ Core cracks due to stresses
 (due to temperature gradients)

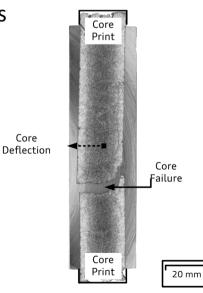
bdguss

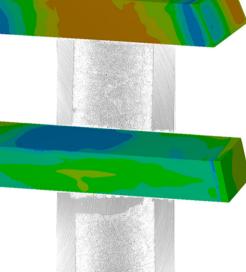
VDI

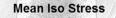
BÜHLER

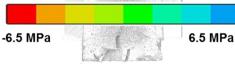
Application of salt cores in high pressure die casting (HPDC)


- Simulation in support of development of salt core usage
 - ⇒ Study of process (shrinkage behaviour, ...)
 - ⇒ Determination of process parameters
 - ⇒ Substantial reduction of experiments
- Simulation of salt core production
 - ⇒ Filling behaviour
 - possible defects
 - design of gating and venting system
 - ⇒ Solidification and shrinkage process
 - high change in density
 - shrinkage factor depends on part geometry
 - very rapid solidification of the surface layer
 - surface is an insulator
 - long solidification time of central zone
 - shrink holes
 - stresses (possible cracks)


[Source: Bühler AG]



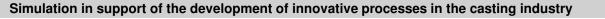

Application of salt cores in high pressure die casting (HPDC)

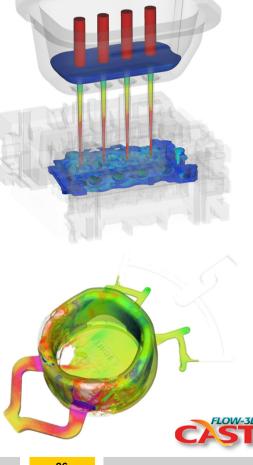

- Simulation of salt core usage in casting process
 - ⇒ Filling and Solidification process
 - ⇒ Core failure due to high ingate velocities
- Fluid-Structure-Interaction option in *FLOW-3D*:
 - \Rightarrow Allows to simulate the interaction of melt and salt core
 - ▷ Investigation of high forces on the cores during filling process (core cracks due to stresses)
 - ⇒ Thermally induced residual stresses

Simulation in support of the development of innovative processes in the casting industry

- 34 -

Summary





Summary

- "The presentation has illustrated the application of simulation for the development of innovative casting processes at BMW Light Metal Foundry and other foundries."
- High pressure die casting of complex structural parts
 ⇒ detailed simulation analysis of the complete HPDC process
- Inserts in high pressure die casting
 - ⇒ FLOW-3D for analysis of the influence of inserts on the filling pattern and their infiltration
- Innovative ingate systems for gravity casting
 - newly developed Injector Casting process of BMW combines
 advantages of traditional processes and avoids their disadvantages
- Core blowing and core drying for sand cores
 ⇒ simulation in support of introduction of new sand core production process with eco-friendly inorganic binders
- Application of salt cores in high pressure die casting
 ⇒ Fluid-structure-interaction option in FLOW-3D allows to calculate the stresses on the salt cores

- 36 -

Thank you for your attention !

