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Dependency of the apparent contact angle on nonisothermal conditions
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The dynamic behavior of liquids in partly filled containers is influenced to a large extend by the
angle between the gas-liquid phase boundary and the solid container wall at the contact line. This
contact angle in turn is influenced by nonisothermal conditions. In the case of a cold liquid meniscus
spreading over a hot solid wall, the contact angle apparently becomes significantly larger. In this
paper we want to establish a quantitative equation for this enlargement, both from experimental and
numerical data. Our findings can be used to build a subgrid model for computations, where the
resolution is not sufficient to resolve the boundary layers. This might be the case for large containers
which are exposed to low accelerations and where the contact angle boundary condition determines
the position of the free surface. These types of computation are performed, for example, to solve
propellant management problems in launcher and satellite tanks. In this application, the knowledge
of the position of the free surface is very important for the withdrawal of liquid and the calculation

of heat and mass transfer. © 2008 American Institute of Physics. [DOI: 10.1063/1.2899641]

I. INTRODUCTION

The prediction of the dynamic behavior of liquids in
partly filled containers is still a challenging task, in particu-
lar, in situations with a small Bond number, when capillary
forces become important. This is, for instance, the case for
the management of cryogenic propellants in tanks of space
vehicles. Examples of corresponding space missions are the
following:

e Multiboost missions for the deployment of multiple
satellites where the upper stages of the launcher per-
form ballistic phases with variable duration from sec-
onds to hours.

» Missions with delayed engine ignitions. Such missions
are carried out for example for extraterrestrial mis-
sions such as the Rosetta space probe; see Ref. 1.

* Missions to Moon and Mars.

One important parameter for the behavior of those lig-
uids is the angle between the gas-liquid phase boundary and
the solid container wall at the contact line. It determines the
shape of the free surface in the tanks, and thus the position of
the liquid bulk itself. The knowledge of the liquid distribu-
tion is important for the withdrawal of liquid from the tank
as well as for the prediction of the heat and mass transfer to
keep the tank pressure within its accepted boundaries. The
contact angle in turn is influenced by nonisothermal condi-
tions. It apparently becomes larger for a cold liquid meniscus
spreading over a hot wall, see Ref. 2. A similar effect has
been observed by Ehrhard and Davis,’ studying the spread-
ing of liquid drops on heated horizontal surfaces. In this
case, the thermocapillary force caused by the temperature
gradient between the cold liquid and the hot plate substan-
tially retards the spreading, which is similar to the increase
of the contact angle.

Liquids with a static contact angle of zero would spread
to infinity. If a temperature gradient exists and a thermocap-
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illary flow is created, the drop will spread to a finite distance
only, thus the effective contact angle is increased. This nu-
merically predicted behavior was later confirmed by
Ehrhard* in a series of laboratory experiments with perfectly
and partially wetting liquids. Anderson et al.’ extended this
work to volatile liquid droplets and took into account the
effect of evaporation from the drop surface. However, these
papers did not focus on the contact angle behavior in detail
and they did not provide a correlation for the effective con-
tact angle as a function of the applicable dimensionless num-
bers for thermocapillary motion. We could not find papers
that deliver a general correlations for the dependence of the
contact angle on temperature gradients between liquid and
solid. To formulate such a correlation is the aim of this paper.

In Ref. 6 we were able to reproduce the effect of an
increasing effective contact angle in numerical simulations at
least qualitatively without modifying the static contact angle
that was prescribed as boundary condition, only considering
the thermocapillary convection induced by the temperature
gradient at the phase boundary. These results indicate that
this effect does not require a sophisticated contact angle
model in numerical simulations, provided that the computa-
tional grid is fine enough to resolve the small scale effects
close to the contact line. However, such a fine grid is unaf-
fordable in simulations performed with commercial CFD
codes for large scale computations to design tanks of space
vehicles in an efficient manner. In this context, an accurate
evaluation of the wetted tank surface is of importance, since
it influences the heat flux into the tank as well as the heat
distribution in the liquid with respect to time. For the stan-
dard liquids used in space applications (e.g., hydrazine,
MMH, N,O,, LH,, LOX), the static contact angle is about
zero under isothermal conditions leading to a total wetting of
the tank surfaces. This may, however, not be true under
nonisothermal conditions, especially for cryogenic liquids.
Heat fluxes into the tank will force larger macroscopic static
contact angles greater than zero. Hence there is a need to

© 2008 American Institute of Physics
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FIG. 1. (a) Geometry and initial free surface configuration at normal gravity condition. Dimensions in mm. (b) Free surface configuration at compensated

gravity conditions.

formulate and to verify macroscopic boundary conditions de-
scribing the small scale effects that cannot be resolved on the
coarse numerical grids used in the industrial practice.

Thus the aim of the present paper is to establish a quan-
titative estimation of the enlargement of the apparent contact
angle caused by nonisothermal conditions. To this end, both
experiments and numerical simulations in an annular gap
have been performed. Related to the somewhat cylindrical
geometries of spacecraft tanks, former tests have been per-
formed mainly in a right circular cylindrical container. Be-
sides the problem of the application of a known temperature
boundary condition on the inner wall of the cylinder, the
observation of the contact line is difficult unless liquids of
the same index of refraction as the transparent container ma-
terial are used, see Michaelis et al” and Dreyer.8 These lig-
uids do not lead to the right order of magnitude of the cor-
responding dimensionless numbers to make this work
applicable to situations in propellant tanks. Thus, an annular
gap geometry with a low viscosity liquid has been chosen to
achieve a better observation in contrast to experiments in a
right circular container.

Steady thermocapillary convection in an annular gap ge-
ometry has been studied by Kamotani et al’ in the Surface
Tension Driven Convection Experiment-2 (STDCE-2)
aboard the USML-2 Spacelab in 1995. The main focus was
the observation of the onset of an oscillatory mode of the
thermocapillary convection. The experimental technique did
not allow us to visualize and to measure the free surface
shape in the vicinity of the contact line nor the contact angle
itself. Furthermore, a steady, fully developed flow field was
achieved by heating the liquid with a central rod heater (like

in our case) and cooling the walls to a constant temperature.
Thus the results cannot be used for the purpose of this paper
to derive a correlation for the effective contact angle, but the
computed flow and temperature fields are similar to ours and
the scaling arguments are very helpful to find the right di-
mensionless numbers. This is outlined in the next sections.

Il. PHYSICAL DESCRIPTION AND MATHEMATICAL
MODEL

A. Physical description

Consider an annular gap, partly filled with liquid, around
a cartridge heater, see Fig. 1. The contact line at the outer
wall was pinned by a sharp edge of the vessel wall. The inner
contact line was free to move up and down the wall at the
heater. The contact angle at the inner wall is to be observed.

Initially, the liquid was in the isothermal 1 g equilibrium
configuration. The free liquid surface was characterized by a
flat shape with a small meniscus at the inner wall. The filling
height of the liquid was adjusted such that the liquid surface
forms a 90° contact angle at the outer wall. Experimentally, a
step reduction in gravity was obtained by the release of a
drop capsule in the drop tower facility of the Center of
Applied Space Technology and Microgravity in Bremen. A
capillary driven reorientation of the liquid to the new 0 g
equilibrium position was then established through a damped
oscillation.

Shortly before the transition to reduced gravity, the
heater was switched on and the temperature raises linearly in
time at the inner wall. The temperature gradient induced a
Marangoni stress at the phase boundary, exciting a flow in
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TABLE I. Definition of the dimensionless numbers. p is the density of the
liquid, w the dynamic viscosity, o the surface tension, o the variation of
surface tension with temperature, ¢, the specific heat capacity, X the heat
conductivity, and SB; the thermal expansion coefficient. The characteristic
values are the width of the annular gap L, the characteristic velocity U as
defined in Eq. (8), the difference between the wall temperature at the heater
and the initial temperature of the fluid ®, and the external acceleration g. g
is the earth gravity initially and drops to zero shortly after the beginning of
the experiment.

Boe pgl? Bond number
o
Oh= /L_ Ohnesorge number
VpoL
Pr= MCy Prandtl number
A
Raz ngﬁT®L3C2 Rayleigh number
A
e pUL Reynolds number
T
Re. o poOL Thermocapillary Reynolds number
M 2
_ pU’L Weber number
=
We, = pUL Thermocapillary Weber number
o0

the liquid and a deformation of the free surface. This defor-
mation superimposed the reorientation of the surface due to
the drop in gravity. In the numerical simulations in Sec. IV,
we also consider the case without reorientation, where we
started in the isothermal Og equilibrium configuration from
the beginning. We denote by J; the initial temperature of the
liquid and by 1, the maximal temperature at the heater at the
end of the experiment.

B. Mathematical model and dimensionless numbers

We assume the flow in the bulk of the liquid phase to be
governed by the incompressible Navier—Stokes equations
and to have an advection-diffusion equation for the heat
transport, which read in dimensionless form as

1 Bo Ra
atu+u'vu_R_eAu+Vp=ﬂeg_ﬁezﬁeg’ (1)
V-u=0, (2)

1
d9+u-Vi-——A9=0, (3)
PrRe

where u is the liquid velocity, p the pressure, ¥ the tempera-
ture, and e, is the unit vector in the direction of the external
acceleration. The definitions of the dimensionless numbers
are given in Table L.

The motion of the gas-liquid phase boundary is assumed
to follow the flow that is, the normal velocity of the free
surface ur is equal to the normal component of the liquid
velocity,

Phys. Fluids 20, 042101 (2008)

ur=u-n. (4)

Furthermore, we assume the following balance of forces to
hold at the boundary:
1 1

Tn=—xn-

— V9, 5
We  Wey ° ®)

where T=-pI+(1/Re)[Vu+(Vu)’] is the dimensionless
stress tensor, n the unit normal vector to the free surface,
pointing in the direction of the gaseous phase, « the curva-
ture of the free surface, and V¢ the gradient of the tempera-
ture along the free surface. We do not consider any influ-
ences from the gaseous phase on the problem, that is, we
neglect the stresses exerted by the gas on the phase bound-
ary, as well as any mass and heat transfer. Note that in the
full model of the two phase flow, the pressure appears only
as a gradient in the bulk of the phases and as a jump term at
the phase boundary, and thus, it is determined only up to an
additive constant. Assuming homogeneity in the gas phase,
we may therefore normalize it to zero at the gas side of the
phase boundary. That is why we may neglect also the pres-
sure from the gas side.

As boundary condition for the shape of the free surface
we assume a fixed contact line at the sharp edge in the outer
wall. At the inner wall, the static contact angle vy, between
the liquid surface and the wall is prescribed.

At the walls, we assume to have no slip,

u=0. (6)

However, the combination of the no-slip condition at the
wall [Eq. (6)] and the kinematic boundary condition (4) leads
to a stress singularity at the contact line. This is a result of
the modeling of the surface as a mathematical one having a
sharp contact line on the wall. From physical evidence it is
known that the surface extends over some molecular diam-
eters of the matter involved, and that adsorbed films on the
wall exist ahead of this mathematical contact line, in particu-
lar, for perfectly wetting liquids as in our case, or that other
mechanisms such as a rolling motion circumvent the moving
contact line problem, see Ref. 10. As a remedy for the arti-
ficial stress singularity, a Navier slip condition has been in-
troduced (as already discussed by Lamb in Ref. 11, pp. 576
and 586). Modern numerical methods allow us to change the
boundary condition at the wall from a slip condition directly
at the contact line to a no-slip condition for a small length [
(as discussed in Sec. IV C). This length shall not be confused
with the extrapolation length used in the Navier slip condi-
tion. The choice of the length [, is somewhat arbitrary
and the influence of its size on the results is discussed in
Sec. IV E.

We follow the approach proposed by Ostrach in Ref. 12
for the scaling of a thermocapillary flow. According to this
paper, the flow has a boundary layer character if

2
Re(%) > 1, (7)

where the Reynolds number is defined via a characteristic
velocity 070D/ uL resulting in Re=o;0D/ v, where v is
the kinematic viscosity. Since the value of the product of the
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TABLE II. Properties of HFE-7100 at a temperature of 25 °C.

s or p v < N
(mN/m)  [mN/(mK)] (kg/m®) (mm?/s) [J/(kgK)] [W/(mK)]

13.6 0.12 1517 0.38 1180 0.069

thermocapillary Reynolds number Re,, times the aspect ratio
was always larger than 10° in our experiments, this criterion
is completely fulfilled. Therefore, we may choose the width
of the annular gap L as the characteristic length and need not
to consider the aspect ratio of liquid depth D to gap width L,
in our case 45/18.75 mm=2.4. The appropriate thermocap-
illary Reynolds number is then the one given in Table I and
the characteristic velocity scale is

202\ 13
U:( 5 ) :
p°vL

(8)

This is also confirmed by computations of Kamotani et al.”?
for a similar configuration but a fixed contact angle of 90°.

Using this scaling, the dimensionless factors appearing
in Eq. (1)—(5) can be rewritten as

RLe = Re,_wm, 9)
\]737(; = BO%RGX;B, (10)
P:{Raezzgl e (1)
PrlRe - éRe;fB, (12)
% = V%Re;,}m, (13)

=Rej,". (14)

Wey,

In our case Ba and Ra drop to zero shortly after the begin-
ning of the experiment. Thus, the scaling yields the
Reynolds—Marangoni number Re;, as well as the ratio
We/We,, of thermocapillary Weber and Weber number as
the relevant characteristic numbers.

Note that the Reynolds—Marangoni number could also
be written as a combination of We/We,, and the Ohnesorge
number,

1 We
Oh>We,,

Rey = (15)

In the experiments, the Fluorinert HFE-7100 has been
used as test liquid. Its properties at a temperature of 25 °C
are listed in Table II. The resulting Ohnesorge number is
Oh=9.3X 107, the Prandtl number is Pr=9.86, and the ini-
tial Bond number is Bo=385. Re, Re;,;, We, and We,, depend
on the temperature difference ® between the heater surface

Phys. Fluids 20, 042101 (2008)

and the liquid. Since the Ohnesorge number was kept con-
stant in the annular gap experiment, the temperature depend-
ing contact line behavior depends solely on

We _ O'T® (]6)
WeM (o ’

Thus the given correlation with respect to We/We,, is
only valid for this particular value of the Ohnesorge number
and the corresponding range of the Re;, number 8.1 X 10*
<Rey<4.6X10°. The range of Marangoni numbers
Ma with Ma=Re,Pr would correspond to 8.0 X 10°<Ma
<4.5X10°.

The shape of the isothermal equilibrium surface for any
given Bond number (and, in particular, the isothermal equi-
librium surface in the absence of external acceleration,
Bo=0) is characterized by setting u=0 and 9=0 in Egs.
(1)—(5), and thus obtaining the Young—Laplace equation

k=Boz-c, (17)

where « is the curvature of the free surface, z the vertical
coordinate, and ¢ a constant depending on the filling height
of the liquid. This constant has been determined numerically
in the following way: In a first step, the liquid volume has
been calculated by solving Eq. (17) with Bo=385 and
c=Boz,, where z,=2.4 is the dimensionless height of the
edge in the vessel wall. This results in the 1 g equilibrium
surface that was the initial configuration in the experiments.
The 0 g configuration for Bo=0 was then obtained in an
iterative loop with an initial value of ¢=0: Solving Eq. (17),
calculating the error in the liquid volume for this solution
and incrementing ¢ by this error. This scheme converges
pretty fast toward a surface with the correct volume.

The goal of this paper was to study and quantify the
angle between the liquid surface and the wall very close to
the contact line. In the experiments, we cannot measure this
angle directly at the contact line, since this by definition
involves the slope of the surface, which in turn can only be
measured at some distance from the wall. The smallest dis-
tance is limited by the optical resolution of the recording
devices.

In the numerical simulations with the software FLOW-3D,
the situation is similar, since here, the free surface is only
implicitly defined by the filling height of the grid cells. With
our software NAVIER used in the present paper, we have an
explicit parametrization of the free surface and therefore we
could in principle measure the contact angle directly at the
wall. However, for NAVIER we prescribe this angle as a
boundary condition (see Sec. IV), so that the impact of the
nonisothermal conditions on the shape of the surface can
only be seen at some distance from the wall.

Therefore we define, what we will call the apparent con-
tact angle vy hereafter, to be the slope of the free surface at
a certain distance r;=0.14 mm from the wall. Note that also
in the isothermal case we have 4> 7y, due to the curvature
of the free surface. To account for this, we define a reference
contact angle 7, to be the slope of the free surface at r;, under
isothermal conditions in the 0 g equilibrium shape, see Fig.
2(b). This equilibrium shape can be computed by solving the

Downloaded 10 Apr 2008 to 134.102.236.210. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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042101-5 Dependency of the apparent contact angle
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FIG. 2. (a) Shape of free surface at microgravity con-
ditions. The static contact angle (y,) at the heater wall
differs from the contact angle (7,) at a distance of r,
=0.14 mm from the wall. The difference decreases with
increasing vy, as shown in (b).

I [0 A T T
; 0 10 20 30 40 50 60
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Young-Laplace equation (17). For a fully wetting fluid, char-
acterized by y,=0°, we have y,=13.3°. Then we define the
enlargement vy, of the apparent contact angle by

Vshift 3= Yai — Yo- (18)

lll. EXPERIMENTS IN THE DROP TOWER

Experiments have been performed in the Drop Tower
Facility in Bremen. The geometric setup was the one de-
scribed in Sec. IT A.

A. Experimental setup

The experimental setup consisted of the circular cylinder
manufactured from a solid polymethyl methacrylate cube,
the cartridge heater placed along the symmetry axis, the test
liquid, the temperature measurement system, pressure mea-
surement, the high speed digital recording system, and back-
ground illumination device. The experimental setup was in-
tegrated in a drop capsule.

Above the edge in the outer wall, the container cross
section changed from cylindrical to quadratic. Thus in com-

screen

contact
ine

meniscus

contact
line

70 80 90

bination with the outer cubic form of the test vessel optical
disturbances resulting from light refraction could be avoided
and an undisturbed view on the contact line at the cartridge
heater was feasible. This allowed the evaluation of the dy-
namic contact angle and the contact line coordinate in depen-
dence on the nonisothermal boundary condition. The car-
tridge heater was commercially available and manufactured
by Friedrich Freek GmbH, Germany. The diameter was
12.5 mm, the length was 80 mm, and the maximum heating
power was 200 W which was varied in the experiment se-
ries. In order to avoid light reflection, the heater surface was
varnished with beamless black paint.

Due to the closed test section a defined state of the gas in
the void region was adjustable. The inert gas argon 6.0 was
used as filling for the void region above the test liquid. The
test vessel was filled with the test liquid HFE-7100 up to the
edge of the interior side of the vessel wall. The Fluorinert
HFE-7100 was manufactured by 3M.

The reorientation process was recorded by a high speed
digital recording system. Two charge coupled device cam-
eras with a resolution of 512 X 480 pixel were used to record
the liquid motion with a frame rate of 250 frames/s. A de-

contact /
line

t=0.64s i

contact
line

t=4.705s |

FIG. 3. Sequence of video frames (512 X 480 pixel; 14.3 X 13.4 mm) from nonisothermal experiment 14.
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TABLE III. Parameters of drop tests.

P P t o Y (C] We/Wey, Yai

No. (W) (hPa) (s) (°0) (°0) (K) (=) )
9 75 994 -1.14 23.9 43.0 19.1 0.17 29
10 30 1018 -1.29 24.5 325 79 0.07 22
11 73 1017 -1.11 24.3 429 18.6 0.16 28
13 31 999 -1.32 23.0 31.1 8.1 0.07 22
14 201 1975 -0.16 22.7 66.9 443 0.38 42
15 207 1975 -0.17 232 67.6 44.4 0.39 42
16 133 2001 -0.38 23.8 53.5 29.7 0.26 35
17 133 2018 -0.33 235 53.0 294 0.26 33
19 164 1998 -0.37 223 594 37.2 0.32 39
20 165 2008 -0.38 223 59.8 37.5 0.32 40
21 106 1995 -0.18 22.8 45.7 229 0.20 31

tailed view of the contact line region at the heater with a
pixel resolution of about 28 wm/pixel and a total view with
a pixel resolution of about 120 um/pixel were adjusted
(Fig. 3).

The temperature measurement was realized by six cop-
per constantan thermocouples (Tc1-Tc6). The wire diameter

The parameter are listed in Table III. The temperature in-
creased linearly with time due to the constant heating power
during the experiment.

The temperature difference © for calculating the
We/We,, was specified by the difference between the initial
temperature at the heater surface and the temperature at the

was 0.13 mm and the response time was 0.04 s. Four ther-
mocouples were placed on the cartridge heater (Tcl-Tc4).
The thermocouples were embedded in the heater surface.
The thermocouples Tcl and Tc2 were below the liquid inter-
face, whereas the thermocouples Tc3 and Tc4 were above.
The fifth thermocouple Tc5 was placed inside the liquid,
whereas the sixth thermocouple Tc6 was placed in the void
region above the liquid interface. The pressure was measured
by a pressure sensor manufactured by Sensotec model TJE.
The measurement range was 0—2 bars with 0.1% accuracy.

heater surface at the end of the experiment 4.72 s after the
release of the capsule. The obtained value was related to the
mean contact angle at the end of the experiment. We/We,,
was varied in the range of 0-0.34 by varying the heater
power in range of 0—200 W, resulting in an increase of the
heater temperature within the experiment time between 0 and
444 K.

Due to the high Prandtl number of about Pr=9.9 the
thermal boundary layer was small in comparison to the vis-
cous boundary layer. The Bond number and the Rayleigh
number were zero during the microgravity time. The proper-
ties of the test liquid were calculated based on the
initial heater temperature. The local change of the properties
due to the temperature increase on the heater wall was not

B. Parameter range

To investigate the influence of the thermal boundary
condition on the apparent dynamic contact angle, the ratio
We/We,, of thermocapillary Weber and Weber number was

varied by changing the heating power of the cartridge heater. considered.
8
80 [ T T T T T rrr T T T T
r () ] 7L (0) ]
70 L ] C ¢
[ (Tc3+Tcd) /2 ] 6F % t=0.64s .
60-_ y 5_§% ﬁt:l,?—ls J
o | : EERINE
S t =-0.16 s
= 50f ! 5 . §~4:§ ! t=47057]
S [ é 1
[ ] 3ES ]
40 L . [ ]
i linear fit 1 2 i E
I ] H ]
30 | - [s § ]
[ ] LE t=oars t=3.56s %j ]
[ #14 L #14
20001y 1 PR B B 0. 1 1 R T
-2 -1 0 1 2 3 4 5 0 1 2 3 4 5
t[s]

FIG. 4. (a) Temperature evolution on the heater surface vs time. Tc3 and Tc4 are thermocouples located at the heater surface above the liquid interface. (b)
Apparent contact line coordinate vs time (time label compare Fig. 3).
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FIG. 5. Apparent dynamic contact angle 7y, vs time. The enumeration of the
data points labels the apparent static contact angle at the turning points of
the contact line oscillation.

C. Data evaluation

The commercial software program MATLAB was used for
digital image processing for the detection of the liquid inter-
face on the pictures from the detailed view after the experi-
ment. Due to the backlight illumination a total reflection at
the liquid/gas interface occurred, where a maximum gradient
from a bright region to a dark region appeared. The location
of the maximum gradient defined the position of the liquid
interface.

In the case of low contact angle the detection of the
contact line position as well as the determination of the con-
tact angle direct at the heater surface was difficult and defi-
cient. Thus the contact line behavior and the dynamic contact
angle behavior were evaluated at a certain distance r;
=5 pixels from the heater wall. The value of r; in the series
of experiments was of about 0.14 mm. The contact angle 7y
was determined by calculating the gradient of the surface
contour at the distance r;.

The contact angle v, at the heater wall differed from the
contact angle 7y at a certain distance r; from the wall, see
Fig. 2(a) and the discussion in Sec. II B.

D. Experimental accuracy

Temperature variances along the heated part of the
heater wall were within 5%. The thermocouples had an ac-
curacy of =0.5 °C and a response time of 0.04 s. The accu-
racy of the routine for detecting the interface contour was on
the order of =2 pixel. The error of the determined contact
angle was below *5°. The inaccuracy with regard to the
experiment time depended on the recording frequency of
250 frames/s, resulting in an error of the order of =2 im-
ages, corresponding to 0.008 s.

E. Results

A typical temperature evolution recorded by the thermo-
couples Tc3 and Tc4 are shown in Fig. 4(a). The temperature
at the heater surface increased with a short delay approxi-
mately linear in time. The heating of the cartridge heater was

Phys. Fluids 20, 042101 (2008)
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7, = 18.3° + 66.4° (We/ We )
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FIG. 6. Final mean apparent dynamic contact angle vs final We/We,, for
different experiments.

started at 7,=—0.16 s (in dimensional units) prior to the drop.
Thus the linear fit of the temperature originates at =0 s.

The corresponding reorientation behavior of the contact
line at the heater wall is shown in Fig. 4(b). Immediately
after step reduction in gravity (=0 s) the contact line started
to rise along the heater wall. Due to the low damping of the
system (low Ohnesorge number) the contact line showed an
overshoot compared to the final equilibrium position, which
would be reached at isothermal conditions. The overshoot
was followed by a viscous damped oscillation of the contact
line.

During the contact line movement the dynamic contact
angle was influenced by viscous forces (expressed by the
capillary number) as well as by the convective flow caused
by the Marangoni convection. Due to high contact line ve-
locities and low temperature differences the viscous forces
were dominant in the beginning. With increasing time the
Marangoni convection gained influence and affected the flow
behavior of the contact line, whereas the capillary forces
decreased.

As outlined above, due to the evaluation of the contact
angle at a certain distance r;, the initial contact angle was
larger than zero and took on a value of about y;=13.3°.
Then, the onset of Marangoni convection caused an overall
increase of the dynamic contact angle, as shown in Fig. 5.

A more detailed view reveals that the dynamic contact
angle oscillated around a certain increasing curve, see Fig. 5.
This oscillation reflects the behavior of the contact line.
More precisely, the apparent dynamic contact angle in-
creased with increasing contact line velocity in the case of
advancing contact line motion, whereas it decreased with
increasing contact line motion for receding contact line mo-
tion. For a contact line velocity equals to zero the contact
angle returned to the static contact angle. In the present study
the continuously increasing Marangoni convection caused a
continuously changing apparent static contact angle. The
enumeration of the data points in Fig. 5 labels the apparent
static contact angle at the turning points of the contact line
oscillation.

Figure 6 summarizes the results of the performed experi-
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TABLE IV. Scaling and dimensionless numbers for the numerical simula-
tions. L/ U is the characteristic time scale.

9, (°C) 45 55 65

L (m) 0.0188

U (m/s) 0.0706 0.0925 0.112
LIU (s) 0.266 0.203 0.167
Pr(—) 9.86

Oh (-) 9.27% 10

Re (-) 3482 4562 5527

We (—) 10.4 17.9 26.2
Wey, () 59.0 67.5 743

ments. The figure shows the mean apparent dynamic contact
angle at the end of the respective experiments versus
We/We,,.

To derive a quantative relation for this dependence, we
use a power law ansatz of the form
We )ﬁ

W_CM (19)

Yshift = & (

Following and anticipating the discussion in Sec. IV, we
fixed the value of 8=0.75 and fitted solely «. Together with
Eq. (18) this resulted in the relation

We 3/4
We ) (20)
M

yd1=13.3°+59°(

to a very good agreement.

IV. NUMERICAL SIMULATION WITH NAVIER

In this section we report on the computational results
concerning the enlargement of the apparent contact angle
obtained by the software NAVIER. Since we are only inter-
ested in the dependency of the apparent contact angle on
nonisothermal conditions, the dynamic reorientation behav-
ior of the free surface is of minor interest in this case. Thus,
we simplify the situation by considering an annular gap in
the absence of external forces, starting from the (isothermal)
Og equilibrium configuration.

=

Phys. Fluids 20, 042101 (2008)

A. Numerical methods

The flow solver NAVIER is a finite element based method
on unstructured triangular grids for the simulation of tran-
sient, incompressible flows, see Ref. 14. The Taylor—-Hood
element (piecewise quadratic functions for the velocity and
piecewise linear functions for the pressure) has been used.
We used the version for axially symmetric flows.

The motion of a free surface is computed using a sharp
interface model with arbitrary Lagrangian—Eulerian coordi-
nates. More precisely, the computational domain coincides
with the liquid domain, while the interface is given by the
corresponding part of the boundary of the liquid domain. To
this end, after each time step the computational grid is
deformed according to the movement of the liquid phase.
This approach leads to a very accurate representation of the
geometry.

The curvature terms are formulated in a variational way,
which yields a very precise, dimensionally independent and
simple-to-implement approximation of the capillary forces.
The solver uses a stable time discretization that is semi-
implicit with respect to the treatment of the curvature terms.
This firstly allows one to choose the time step independently
of the mesh size—as opposed to common “explicit” treat-
ments of the curvature terms—and secondly decouples the
computation of the geometry and the flow field. This ap-
proach has proven to be both efficient and robust. For details,
see Ref. 15. NAVIER has been successfully validated by many
academic as well as physical examples.

B. Numerical setup and boundary conditions

The same geometric setup as described in Sec. II A was
used in the numerical simulation. Dirichlet boundary condi-
tions for the temperature were imposed at the walls. At the
outer wall, the bottom, and at the lower part of the inner wall
the temperature was kept constant at ;=25 °C, which was
also taken as the initial (cold) temperature of the liquid. At
the upper part of the inner wall, where the cartridge heater
was located, the temperature was raised linearly in time until
it reached some maximum value 1, at the end of the numeri-
cal experiment, 5 s (in physical time) after the temperature
started to rise. The value of 1, was varied in different simu-
lations. The dimensionless numbers for the simulations are

FIG. 7. (Color online) Isolines of temperature (left) and
velocity vectors and streamlines (right) in the meniscus.
The temperature varies from ;=25 °C in the bulk of
the liquid to ¥,=65 °C at the heater wall. Numerical
simulation with y,=15° at the end of the simulation
time.
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FIG. 8. Computational grid with a closeup near the contact line. The computational grid had around 6700 triangles.

given in Table IV. The gas-liquid phase boundary was as-
sumed to be adiabatic.

For the flow field, a no slip boundary condition was
imposed at the walls (except close to the contact line, see
Secs. IT B and IV C). At the free surface, the stress as given
in Eq. (5) was prescribed. As initial conditions for the flow
field and the geometry, we started with the isothermal equi-
librium configuration: the velocity was set to zero, the free
surface was set to the 0 g configuration, as calculated by
solving the Young-Laplace equation (17) with the Bond
number set to zero. In order to be sure to start in the equi-
librium, the simulation was kept running in the initial state
for some time before switching on the heater to allow any
residual velocities arising from perturbations in the initial
conditions to settle down.

All data, geometry, as well as boundary and initial con-
ditions are axially symmetric. Since the flow is laminar, we
assumed the solution to respect this symmetry, that is, the
azimuthal derivatives of all quantities involved, as well as
the azimuthal component of the velocity were assumed to
vanish.

It might be noteworthy that the numerical solution fea-
tures sharp thermal boundary layers close to the cartridge
heater and even more pronounced at the phase boundary, see
Fig. 7. The resolution of these layers with a sufficiently fine
mesh in these regions was found to be mandatory to get
correct results. A typical computational grid is shown in Fig.
8. At the heater and the liquid surface, the computational grid

has been generated by a self-written program adapted to the
geometry. The coarse grid in the interior of the liquid domain
has been completed using the grid generator TRIANGLE by
Shewchuk, see Ref. 16. The computational grid had around
6700 triangles which results in around 28 000 degrees of
freedom for the velocity, 14 000 degrees of freedom for the
temperature, and 3700 degrees of freedom for the pressure.

A simple time step control was used to reduce the overall
numerical effort. The actual time step sizes varied between
1.3X 1073 and 1.3 X 1072 in dimensionless units.

55

T
—o0— =7 ]
s ]
50 | S
o o s ]
451 T~q —A— 4y =30° 4
o S
w0f oy \j 3
" o0
T om \O\ ;
o)
30F | ]
25 b \K ]
A
20 I R

-3 = -2 = B
10 10 10

FIG. 9. a vs [, with « resulting from the best fit using the ansatz [Eq. (19)]
with a fixed value of £=0.75 for y,=15° and ¥,=65 °C.
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FIG. 10. yy vs We/We,, for y,=15° (a) and ,=30° (b) for different maximum temperatures. The longer plots correspond to the higher temperature 9, at the

end of the simulation.

C. Boundary conditions at the contact line

As discussed in Sec. II B, the kinematic boundary con-
dition (4) is in contradiction to the no slip boundary condi-
tion at the wall for a moving contact line. Therefore, the no
slip boundary condition was relaxed close to the contact line
in the following way: A slip boundary condition (i.e., zero
normal flux and zero tangential stress) was imposed within a
tiny region below the contact line. We denote the width of
this region by /. In order to test the influence of this param-
eter, several simulations have been performed with varying
I,. The parameter « of the power law ansatz [Eq. (19)] has
been calculated in the same way as described in Sec. IV E
below, using a fixed value of $=0.75 for the fit. Figure 9
shows that the enlargement of the apparent contact angle gets
stronger for smaller values of [, with a certain saturation in
the vicinity of /,=2X 1073 in dimensionless length. Thus,
has been fixed to this value for the rest of the simulations.

As boundary condition for the shape of the the free sur-
face, a fixed static contact angle vy, was prescribed at the
inner wall. More involved models for a dynamic contact
angle generally require additional parameters that are not
known a priori. The need to adapt these parameters would

40 7 T T T T T

Y, (a)
a5 - 20 4 389 (We/We ) 1

o=
30 [ ]
25 [ ]
0l ]
0.0 0.1 0.2 0.3 0.4 0.5
0.731
(We/ WcM) [

spoil the goal of our investigation to observe the behavior of
the numerical simulation with respect to the apparent contact
angle. Note also that we skipped the reorientation in the
simulation and started in the Og equilibrium configuration
instead. In this case, the contact line does not move besides a
slight recede during the simulation. A model for a dynamic
contact angle is therefore not needed.

Since our numerical methods work with a sharp interface
model, we cannot cope with a contact angle of 0°, i.e., with
a full wetting liquid, directly. Instead, we compared runs
with static contact angles varying from 50° down to 7°.

D. Data evaluation

As described in Sec. II B we define the apparent contact
angle 7yy as the slope of the free surface at a distant of
r;=0.14 mm from the inner wall and the enlargement of this
angle compared to the isothermal equilibrium shape y,;; as
in Eq. (18). In order to establish a relation for vy as a
function of v, and the nonisothermal condition expressed by
We/Wey =00/ we used the power law ansatz from
Eq. (19),

Y ge—
N ()

56

N 0.8
I 513 + 19.4 (We/ We )

N B B B
0.00 0.05 0.10 0.15 020 0.25

0.856

(we/we )" 1]

FIG. 11. Best fit for @ and B using the ansatz [Eq. (19)] for 9,=65 °C, y,=15° (a) and 9,=45 °C, y,=50° (b).
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FIG. 12. Values of the exponent 3 as a result of the best fit for the ansatz
[Eq. (19)].

We )ﬁ

= —
Vshift (WCM

where now « and B may depend on vy,.

E. Results

Since the inner wall temperature raised in time, we got a
time dependent value for ® and thus for We/We,,, see Eq.
(16). Thus each numerical experiment delivered one relation
of yy versus We/We,,. Figure 10 shows that the curves for
different values of 1, match very well for each value of vy,.

To acquire values for a and 3, in a first approach a least
squares fit for ansatz [Eq. (19)] was computed individually
for each run. Figure 11 shows two typical results of this fit
for two different runs. The fit matches very well, so the
power law ansatz seemed to be justified. The exponents 3
from the fits for all the runs are shown in Fig. 12. The value
of this exponent is almost constant and varies only between
0.67 and 0.84, with a tendency of a smaller B for smaller v,
and bigger 9, that is, for the experiments where the overall
change in vy is most pronounced. Choosing a constant value
of 8=0.75 thus seemed to be appropriate.

In a second approach, now « was solely fitted for ansatz
[Eq. (19)] individually for each run, with the fixed value of

40 T T T T T
7(11 (a)
g5 [~ 20 + 407 (We/ We )" ]
< a0l ]
25 [ ]
0 v o
0.0 0.1 0.2 0.3 0.4 0.5

0.75

(we/we )" [
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FIG. 14. @ vs v, with a resulting from the best fit using the ansatz [Eq.
(19)] with a fixed value of 8=0.75.

B=0.75, see Fig. 13. Note that Fig. 13(b) shows the worst
case, the run, where originally the discrepancy of 8 from the
value of 0.75 was the largest. Nevertheless, the data match
quite well.

Figure 14 shows «a as a result from the fit with the fixed
value of 3=0.75 versus 7y,. Again, the curves for different
values of 1, agree well. As one should expect, a clearly
decreases with larger vy,. Note that for y,=90° the impact of
the nonisothermal conditions on 7y vanishes.

A further power law ansatz for « as a function of
yielded

a=0.12(90 ° — y,)'¥. (21)

The upshot of all data analysis for vy is therefore

We )0.75
We,,/

Vshift = 0.12(90° - %)1'35( (22)

Extrapolating to the case of a full wetting fluid, characterized
by v,=0, is then

We 0.75
Yohiee = 52.0 (We ) . (23)
M
57_' T T I
56 :_ ’74" (b) n

0.75

%0

1510 [ SR EEEE BTSETEE ATRTAEE BYETETET BT
0.00 0.05 0.10 0.15 0.20 0.25 0.30

[ 0.75 [_]

(We/ Wei")

FIG. 13. Best fit for « using the ansatz [Eq. (19)] with fixed value 8=0.75 for 9,=65 °C, y,=15° (a) and 9,=45 °C, y,=50° (b).
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FIG. 15. (Color online) Temperature distribution in heater element in K; sequence of FLOW-3D frames at =1 s, =3 s, t=5 s.

V. ASSESSMENT WITH THE COMMERCIAL FLow-3D
SOFTWARE

In space industry the commercial software tool FLOW-3D
is frequently used for solving problems concerning the pro-
pellant behavior under microgravity conditions due to its
functionality, effectiveness, and reliable reproduction of
physical features, in general. A crucial issue is the validation
and benchmarking of commercial tools such as FLOW-3D.
Thus, we complemented our experimental and numerical in-
vestigation by simulations performed by FLOW-3D.

The following physical and numerical conditions were
applied:

* A static 0° contact angle was prescribed.

* Any influences from the gas phase, including heat ex-
change and evaporation effects, were neglected.

e Laminar viscous flow was applied.

e The cartridge heater has been fully modeled prescrib-
ing the heating power.

* A no-slip condition holds at the wall/liquid interface.

e The numerical model used grids of 140X 372 and
280 X 744 cells.

As a representative example, the case with 200 W heat-
ing power was simulated. Figure 15 shows the temperature
distribution inside the heater element and Fig. 16 the corre-
sponding liquid temperature obtained by FLOW-3D.

The heater temperature profile was monitored at the
same locations as defined in the experiment. A comparison of
the temperature (experiment versus FLOW-3D solution) for the
average of the values from Tc3 and Tc4 is shown in Fig.
17(a). The temperature history profile is close to the experi-
mental measurement. Thus it can be concluded that the ther-
mal boundary conditions at the wall-liquid interface from the

experiment were well reproduced in the numerical simula-
tion.

The cell sizes in the computational grid were 0.25 mm
for the coarse grid and 0.125 mm for the fine grid. Note that
this is already much finer than the meshes used for real ap-
plications in the industry. But still, it is too coarse to evaluate
the apparent contact angle at r; as in the previous sections.
Therefore the slope of the free surface between the third and
the fourth cell was taken to be the apparent contact angle yy
for the coarse grid and the slope between the ninth and the
tenth cell was taken for the fine grid.

A best fit for yy using the power law ansatz [Eq. (19)]
with value of 8=0.75 yielded

We \075
We ) @4
M

ya=13.3° +28.7 (

for the grid with 140X 372 cells. In order to investigate the
convergence behavior of the numerical simulation, a second
analysis was carried out with a grid of half the cell size
(280X 744 grid). Using this grid, the fit for vy, yields

We )075

Sy

va=13.3° +394° ( (25)
The contact angle values become larger using the finer grid.
The measured contact angle with respect to time is shown in
Fig. 17(b) for the coarse and the fine grid calculation. Due to
the representation of the free surface within the volume of
fluid (VOF) method of FLOW-3D, the curve of vy, appears to
be rather wiggly. The fit shows that obviously the numerical
data underestimated the influence of the dynamic contact
angle by about 55% for the coarse grid calculation. In the
case of a finer grid of half the cell size this value reduced to
about 40% for this test example.
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FIG. 16. (Color online) Temperature distribution in liquid in K; frames at 1=0's, t=3's, t=5s, 140X 372 grid.

VI. CONCLUSION

Experiments and numerical calculations were performed
to investigate the effect of Marangoni convection on the dy-
namic contact angle and on the dynamic behavior of the free
liquid interface at compensated gravity conditions. In the ex-
periments, microgravity conditions were obtained after the
release of a drop capsule in the drop tower facility Bremen.

Thermocapillary flows were generated in an annular gap
partly filled with a high Prandtl number (=10) fluid. The
fluid was heated by a cylindrical cartridge heater at the cen-
ter. The relevant dimensionless parameter to characterize this
system is the ratio

80 ——

Experiment ( a)

70 L

[ omeeeeeeoes FLOW-3D (140x372 grid)

t[s]

of Weber number We and thermocapillary Weber number
We,;, where © is the temperature difference between the
heater wall and the liquid. The supply of constant heating
power ensured a linear increase of temperature difference
during the experiment time. The heating power was varied
between 0 and 200 W, resulting in an increase of the heater
temperature within the experiment time between 0 and
44.4 K. Thus the thermocapillary Weber number was varied
in the range of 0-0.34.

The measured data show that the Marangoni convection

e S e e
70 [ s 140x272 coarse grid (b)
------- Fit coarse grid
60 L . .
280x744 fine grid
50 & Fit fine grid

Yar [°)

FIG. 17. Numerical simulations with FLOW-3D. (a) Temperature history of upper temperature sensor location (Tc3+Tc4)/2. Comparison of experiment and
numerical solutions with the 140 X 372 grid. (b) contact angle 7y, and fit according to power law (140X 372 and 280 X 744 grid) as given in Egs. (24) and (25).
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FIG. 18. Power law for the apparent contact angle for full wetting fluids as
a function of We/We,,;. Comparison between the results from experiments
and from numerical simulations with NAVIER and FLOW-3D.

caused an increase of the apparent dynamic contact angle.
The numerical simulations using the flow solver NAVIER
turned out to reproduce the results from the experiments
quite well even with the simple model of a static contact
angle, provided the computational grid was fine enough to
resolve the thermal boundary layers. This suggests that the
enlargement of the apparent contact angle is due to ther-
mocapillary effects at the surface and need not to be ex-
plained by other effects directly at the contact line.

The enlargement vy, of the apparent contact angle as a
function of the ratio 070/ 0 of Weber number We and ther-
mocapillary Weber number We,, has been successfully fitted
from the experimental and numerical data by a power law.
For the experiments, this fit yielded

We )3/4

We,,/

For the numerical simulations, the static contact angle y, was
varied, resulting in

Yohire = 59.0 (

We )3/4

nir=0.12(90° — 1-35(
Yshift ( 7?) WCM

Extrapolating this result to the full wetting case y,=0 results
in
We 3/4
Yshite = 52.0° <_> ’
Cm
which is slightly below the experimental findings, see
Fig. 18.

This law may be helpful in estimating the accuracy of
numerical tools with respect to Marangoni convection.
Moreover, it can be used as a subgrid model, when the grid
cannot resolve the boundary layers, which is usually the case
in industrially relevant situations.

For instance, the commercial software FLOW-3D is fre-
quently used for these kind of problems in space industry

Phys. Fluids 20, 042101 (2008)

due to its functionality, effectiveness, and reliable reproduc-
tion of physical features, in general. However, numerical
simulations performed by FLOW-3D tend to strongly underes-
timate the influence of Marangoni convection on the enlarge-
ment of the apparent contact angle. This effect is strongly
mesh dependent, of course being more pronounced on
coarser meshes. Since the industrially relevant geometries
are of three dimensional nature, having length scales of
meters, meshes are usually much coarser than the ones used
in the present study for a simple two dimensional geometry.

An adaptation of the code’s current contact angle model
as a function of the temperature gradient may therefore be
necessary, if accurate results concerning the location of the
temperature dependent interface under microgravity are re-
quired. Our findings may provide such a kind of subgrid
contact model.
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